Aqueous supercapacitors are powerful energy sources, but they are limited by energy density that is much lower than lithium-ion batteries. Since raising the voltage beyond the thermodynamic potential for water splitting (1.23 V) can boost the energy density, there has been much effort on water-stabilizing salvation additives such as LiSO that can provide an aqueous electrolyte capable of withstanding ~1.
View Article and Find Full Text PDFFood coloring is often used as a coloring agent in foods, medicines and cosmetics, and it was reported to have certain carcinogenic and mutagenic effects in living organisms. Investigation of physiological parameters using zebrafish is a promising methodology to understand disease biology and drug toxicity for various drug discovery on humans. Zebrafish (Danio rerio) is a well-acknowledged model organism with combining assets such as body transparency, small size, low cost of cultivation, and high genetic homology with humans and is used as a specimen tool for the in-vivo throughput screening approach.
View Article and Find Full Text PDFLiTiO anode can operate at extraordinarily high rates and for a very long time, but it suffers from a relatively low capacity. This has motivated much research on NbO as an alternative. In this work, we present a scalable chemical processing strategy that maintains the size and morphology of nano-crystal precursor but systematically reconstitutes the unit cell composition, to build defect-rich porous orthorhombic NbO with a high-rate capacity many times those of commercial anodes.
View Article and Find Full Text PDFSub-50 nm nanoparticles feature long circulation and deep tumor penetration. However, at high volume fractions needed for intravenous injection, safe, highly biocompatible phospholipids cannot form such nanoparticles due to the fluidity of phospholipid shells. Here we overcome this challenge using a nano-surfactant, a sterilized 18-amino-acid biomimetic of the amphipathic helical motif abundant in HDL-apolipoproteins.
View Article and Find Full Text PDFMuch effort has been devoted to device and materials engineering to realize nanoscale resistance random access memory (RRAM) for practical applications, but a rational physical basis to be relied on to design scalable devices spanning many length scales is still lacking. In particular, there is no clear criterion for switching control in those RRAM devices in which resistance changes are limited to localized nanoscale filaments that experience concentrated heat, electric current and field. Here, we demonstrate voltage-controlled resistance switching, always at a constant characteristic critical voltage, for macro and nanodevices in both filamentary RRAM and nanometallic RRAM, and the latter switches uniformly and does not require a forming process.
View Article and Find Full Text PDFSnO -based lithium-ion batteries have low cost and high energy density, but their capacity fades rapidly during lithiation/delithiation due to phase aggregation and cracking. These problems can be mitigated by using highly conducting black SnO , which homogenizes the redox reactions and stabilizes fine, fracture-resistant Sn precipitates in the Li O matrix. Such fine Sn precipitates and their ample contact with Li O proliferate the reversible Sn → Li Sn → Sn → SnO /SnO cycle during charging/discharging.
View Article and Find Full Text PDFResistance random access memory (RRAM) is a rapidly developing emergent nanotechnology. For practical applications and basic understanding, it is important to ascertain whether RRAM undergoes uniform or filamentary switching, but on this point previous area-scaling studies have often shown ambiguous and conflicting findings. Here we demonstrate a simple test-physically breaking the device into two and studying their characteristics individually-can make a definitive determination.
View Article and Find Full Text PDFTreatments for chronic rhinosinusitis (CRS) and asthma can affect both conditions, based on the united airway concept. This study aimed to evaluate the link between CRS and asthma, based on disease-specific quality of life measures.We performed a prospective cohort study to investigate the correlations between results from CRS- and asthma-specific questionnaires.
View Article and Find Full Text PDFThis study presents a new type of resistive switching memory device that can be used in biodegradable electronic applications. The biodegradable device features magnesium difluoride as the active layer and iron and magnesium as the corresponding electrodes. This is the first report on magnesium difluoride as a resistive switching layer.
View Article and Find Full Text PDFOxygen vacancy formation, migration, and subsequent agglomeration into conductive filaments in transition metal oxides under applied electric field is widely believed to be responsible for electroforming in resistive memory devices, although direct evidence of such a pathway is lacking. Here, by utilizing strong metal-support interaction (SMSI) between Pt and TiO2, we observe via transmission electron microscopy the electroforming event in lateral Pt/TiO2/Pt devices where the atomic Pt from the electrode itself acts as a tracer for the propagating oxygen vacancy front. SMSI, which originates from the d-orbital overlap between Pt atom and the reduced cation of the insulating oxide in the vicinity of oxygen vacancies, was optimized by fabricating nanoscale devices causing Pt atom migration tracking the moving oxygen vacancy front from the anode to cathode during electroforming.
View Article and Find Full Text PDFCarbon-based supercapacitors can provide high electrical power, but they do not have sufficient energy density to directly compete with batteries. We found that a nitrogen-doped ordered mesoporous few-layer carbon has a capacitance of 855 farads per gram in aqueous electrolytes and can be bipolarly charged or discharged at a fast, carbon-like speed. The improvement mostly stems from robust redox reactions at nitrogen-associated defects that transform inert graphene-like layered carbon into an electrochemically active substance without affecting its electric conductivity.
View Article and Find Full Text PDF3D architectures constructed from a tubular graphene network can withstand repeated >95% compression cycling without damage. Aided by intertubular covalent bonding, this material takes full advantage of the graphene tube's unique attributes, including complete pre- and post-buckling elasticity, outstanding electrical conductivity, and extraordinary physicochemical stability. A highly connected tubular graphene will thus be the ultimate, structurally robust, ultrastrong, ultralight material.
View Article and Find Full Text PDF(1)H MRS, (31)P MRS and diffusion-weighted MRI (DW-MRI) were applied to study the metabolic changes associated with estrogen dependence in estrogen receptor (ER)-positive BT-474 and triple-negative HCC1806 breast cancer xenografts supplemented with or without 17β-estradiol (E2) at a dose of 0.18 or 0.72 mg/pellet.
View Article and Find Full Text PDFFilamentary resistive random-access memory (ReRAM) employs a single nanoscale event to trigger a macroscopic state change. While fundamentally it involves a gradual electrochemical evolution in a nanoscale filament that culminates in an abrupt change in filament's resistance, understanding over many length and time scales from the filament level to the device level is needed to inform the device behavior. Here, we demonstrate the nanoscale elements have corresponding elements in an empirical equivalent circuit.
View Article and Find Full Text PDFNanoelectronic memory based on trapped charge need to be small and fast, but fundamentally it faces a voltage-time dilemma because the requirement of a high-energy barrier for data retention under zero/low electrical stimuli is incompatible with the demand of a low-energy barrier for fast switching under a modest programming voltage. One solution is to embed an atomic-level lever of localized electron-phonon interaction to autonomously reconfigure trap-site's barrier in accordance to the electron-occupancy of the site. Here we demonstrate an atomically levered resistance-switching memory built on locally flexible amorphous nanometallic thin films: charge detrapping can be triggered by a mechanical force, the fastest one being a plasmonic Lorentz force induced by a nearby electron or positron bunch passing in 10(-13) s.
View Article and Find Full Text PDFPurpose: To evaluate the reticuloendothelial system (RES) function by real-time imaging blood clearance as well as hepatic uptake of superparamagnetic iron oxide nanoparticle (SPIO) using dynamic magnetic resonance imaging (MRI) with two-compartment pharmacokinetic modeling.
Materials And Methods: Kinetics of blood clearance and hepatic accumulation were recorded in young adult male 01b74 athymic nude mice by dynamic T2* weighted MRI after the injection of different doses of SPIO nanoparticles (0.5, 3 or 10 mg Fe/kg).
Dielectric thin films in nanodevices may absorb moisture, leading to physical changes and property/performance degradation, such as altered data storage and readout in resistance random access memory. Here we demonstrate using a nanometallic memory that such degradation proceeds via nanoporosity, which facilitates water wetting in otherwise nonwetting dielectrics. Electric degradation only occurs when the device is in the charge-storage state, which provides a nanoscale dielectrophoretic force directing H2O to internal field centers (sites of trapped charge) to enable bond rupture and charged hydroxyl formation.
View Article and Find Full Text PDFBipolar resistance-switching materials allowing intermediate states of wide-varying resistance values hold the potential of drastically reduced power for non-volatile memory. To exploit this potential, we have introduced into a nanometallic resistance-random-access-memory (RRAM) device an asymmetric dynamic load, which can reliably lower switching power by orders of magnitude. The dynamic load is highly resistive during on-switching allowing access to the highly resistive intermediate states; during off-switching the load vanishes to enable switching at low voltage.
View Article and Find Full Text PDFIron-oxide-containing double emulsion capsules carrying both hydrophilic and hydrophobic therapeutic molecules can deliver drugs and energy on demand in vivo. Magneto-chemotherapy/hyperthermia involves a burst-like release of hydrophilic doxorubicin and hydrophobic paclitaxel, remotely triggered by a high frequency magnetic field, which also releases energy via internalized iron oxide nanoparticles, all contributing to cell kill.
View Article and Find Full Text PDFQuantum-dot-tagged reduced graphene oxide (QD-rGO) nanocomposites (left) internalized into targeted tumor cells display bright fluorescence from the QDs (right); by absorbing NIR radiation incident on the rGO and converting it into heat, they also cause simultaneous cell death and fluorescence reduction (bottom). The nanocomposite is thus capable of tumor imaging, photothermal therapy and in situ monitoring of treatment in progress.
View Article and Find Full Text PDFResistance switching memory operating by a purely electronic switching mechanism, which was first realized in Pt-dispersed SiO2 thin films, satisfies criteria including high uniformity, fast switching speed, and long retention for non-volatile memory application. This resistive element obeys Ohm's law for the area dependence, but its resistance exponentially increases with the film thickness, which provides new freedom to tailor the device characteristics.
View Article and Find Full Text PDFInsulators and conductors with periodic structures can be readily distinguished, because they have different band structures, but the differences between insulators and conductors with random structures are more subtle. In 1958, Anderson provided a straightforward criterion for distinguishing between random insulators and conductors, based on the 'diffusion' distance ζ for electrons at 0 K (ref. 3).
View Article and Find Full Text PDFLow-density lipoprotein (LDL) provides a highly versatile natural nanoplatform for delivery of optical and MRI contrast agents, photodynamic therapy agents and chemotherapeutic agents to normal and neoplastic cells that over express LDL receptors (LDLR). Extension to other lipoproteins ranging in diameter from approximately 5-10 nm (high density lipoprotein, HDL) to over a micron (chilomicrons) is feasible. Loading of contrast or therapeutic agents has been achieved by covalent attachment to protein side chains, intercalation into the phospholipid monolayer and extraction and reconstitution of the triglyceride/cholesterol ester core.
View Article and Find Full Text PDFLow-density lipoprotein (LDL) provides a highly versatile natural nanoplatform for delivery of visible or near-infrared fluorescent optical and magnetic resonance imaging (MRI) contrast agents and photodynamic therapy and chemotherapeutic agents to normal and neoplastic cells that overexpress low-density lipoprotein receptors (LDLRs). Extension to other lipoproteins ranging in diameter from about 10 nm (high-density lipoprotein [HDL]) to over a micron (chylomicrons) is feasible. Loading of contrast or therapeutic agents onto or into these particles has been achieved by protein loading (covalent attachment to protein side chains), surface loading (intercalation into the phospholipid monolayer), and core loading (extraction and reconstitution of the triglyceride/cholesterol ester core).
View Article and Find Full Text PDF