5-Aminolevulinic acid (5-ALA), a non-proteinogenic five-carbon amino acid, has received intensive attentions in medicine due to its approval by the US Food and Drug Administration (FDA) for cancer diagnosis and treatment as photodynamic therapy. As chemical synthesis of 5-ALA performed low yield, complicated processes, and high cost, biosynthesis of 5-ALA via C4 (also called Shemin pathway) and C5 pathway related to heme biosynthesis in microorganism equipped more advantages. In C4 pathway, 5-ALA is derived from condensation of succinyl-CoA and glycine by 5-aminolevulic acid synthase (ALAS) with pyridoxal phosphate (PLP) as co-factor in one-step biotransformation.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2021
5-Aminolevulinic acid (ALA) is an essential intermediate for many organisms and has been considered for the applications of medical especially in photodynamic therapy of cancer recently. However, ALA production via chemical approach is complicated; hence, microbial manufacturing has received more attentions. In this study, a modular design to simultaneously express ALA synthase from Rhodobacter sphaeroides (RshemA), a non-specific ALA exporter (RhtA), and chaperones was first developed and discussed.
View Article and Find Full Text PDF5-Aminolevulinic acid (ALA) is an important metabolic intermediate compound with high value and has recently been used in agriculture and medicine. In this study, we have constructed six recombinant Escherichia coli (E. coli) strains that are involved in pET system under the regulation of the T7 promoter and LacI to express codon-optimized hemA gene from Rhodobacter capsulatus (RchemA) for ALA production via the C4 pathway.
View Article and Find Full Text PDF5-Aminolevulinic acid (5-ALA) is an unnatural amino acid and has been approved as a biodegradable, non-toxic pesticide and herbicide with applications in sustainable agriculture. 5-ALA can also be applied for cancer targeting via tumor localization and photodynamic therapy. Herein, we developed a feasible quantification, regulation and production method of 5-ALA in Escherichia coli is based on the chimera of 5-ALA synthetase from Rhodobacter sphaeroides (RshemA) and super-fold green fluorescent protein (sfGFP) under the control of dual promoters/double plasmids.
View Article and Find Full Text PDF