Publications by authors named "I-Pin Chang"

Key agreements that use only password authentication are convenient in communication networks, but these key agreement schemes often fail to resist possible attacks, and therefore provide poor security compared with some other authentication schemes. To increase security, many authentication and key agreement schemes use smartcard authentication in addition to passwords. Thus, two-factor authentication and key agreement schemes using smartcards and passwords are widely adopted in many applications.

View Article and Find Full Text PDF

The integrated EPR information system supports convenient and rapid e-medicine services. A secure and efficient authentication scheme for the integrated EPR information system provides safeguarding patients' electronic patient records (EPRs) and helps health care workers and medical personnel to rapidly making correct clinical decisions. Recently, Wu et al.

View Article and Find Full Text PDF

The security and privacy are important issues for electronic patient records (EPRs). The goal of EPRs is sharing the patients' medical histories such as the diagnosis records, reports and diagnosis image files among hospitals by the Internet. So the security issue for the integrated EPR information system is essential.

View Article and Find Full Text PDF

Nanodiamonds (NDs) have versatile applications in electro-optical devices, sensors, and biomedicine. Owing to the difficulty in activation of the inert sp(3) C-H bonds on the surface of NDs, it is not trivial to modify the surface functionalities on NDs. A few functionalization methods have been reported in the literature for surface modification of NDs.

View Article and Find Full Text PDF

Magnetic nanodiamonds were prepared via solid-state microwave arcing of a nanodiamond-ferrocene mixed powder in a focused microwave oven. High-resolution transmission electron microscope (HRTEM) images show that a magnetic nanodiamond is composed of iron nanoparticles encapsulated by graphene layers on the surface of nanodiamonds. Fluorescence property was introduced onto magnetic nanodiamonds by chemical modification of magnetic nanodiamonds via surface grafting of poly(acrylic acids) and fluorescein o-methacrylate.

View Article and Find Full Text PDF