We demonstrate a new technique of coherent pulse stacking (CPS) amplification to overcome limits on achievable pulse energies from optical amplifiers. CPS uses reflecting resonators without active cavity-dumpers to transform a sequence of phase- and amplitude-modulated optical pulses into a single output pulse. Experimental validation with a single reflecting resonator demonstrates a near-theoretical stacked peak-power enhancement factor of ~2.
View Article and Find Full Text PDFIn this paper, we report an advance in increasing core size of effective single-mode chirally-coupled-core (CCC) Ge-doped and Yb-doped double-clad fibers into 55 µm to 60 µm range, and experimentally demonstrate their robust single-mode performance. Theoretical and numerical description of CCC fibers structures with multiple side cores and polygon-shaped central core is consistent with experimental results. Detailed experimental characterization of 55 µm-core CCC fibers based on spatially and spectrally resolved broadband measurements (S(2) technique) shows that modal performance of these large core fibers well exceeds that of standard 20 μm core step-index large mode area fibers.
View Article and Find Full Text PDFBoth analytical study and numerical simulations show that the propagation-length independent Stimulated Raman Scattering (SRS) threshold can be achieved by Stokes wave suppression in optical fibers. We propose a specific design based on Chirally-Coupled-Core (CCC) fibers with spectrally-tailored wavelength-selective transmission to suppress the Stokes wave of Raman scattering. Fibers with length-independent nonlinearity threshold could be particularly advantageous for high power lasers and fiber beam delivery for material processing applications.
View Article and Find Full Text PDF