Publications by authors named "I-Hui Hsieh"

Hearing-in-noise (HIN) ability is crucial in speech and music communication. Recent evidence suggests that absolute pitch (AP), the ability to identify isolated musical notes, is associated with HIN benefits. A theoretical account postulates a link between AP ability and neural network indices of segregation.

View Article and Find Full Text PDF

Purpose: Pitch variations of the fundamental frequency () contour contribute to speech perception in noisy environments, but whether musicians confer an advantage in speech in noise (SIN) with altered information remains unclear. This study investigated the effects of different levels of degraded contour (i.e.

View Article and Find Full Text PDF

Temporal envelope fluctuations of natural sounds convey critical information to speech and music processing. In particular, musical pitch perception is assumed to be primarily underlined by temporal envelope encoding. While increasing evidence demonstrates the importance of carrier fine structure to complex pitch perception, how carrier spectral information affects musical pitch perception is less clear.

View Article and Find Full Text PDF

Recent evidence suggests that musicians may have an advantage over non-musicians in perceiving speech against noisy backgrounds. Previously, musicians have been compared as a homogenous group, despite demonstrated heterogeneity, which may contribute to discrepancies between studies. Here, we investigated whether "quasi"-absolute pitch (AP) proficiency, viewed as a general trait that varies across a spectrum, accounts for the musician advantage in hearing-in-noise (HIN) performance, irrespective of whether the streams are speech or musical sounds.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how pitch variations in FM sweeps, which are important for speech comprehension, interact with timescale at the early stages of auditory processing.
  • Using an auditory oddball paradigm, researchers recorded brain responses (MMNs) to different FM sweeps with varying pitch contours (F0 vs. F1) and timescales (local vs. global) in Mandarin Chinese.
  • Results showed a complex interaction between timescale and pitch contour, indicating that these elements are processed together at an early stage, which is crucial for improving speech encoding later on.
View Article and Find Full Text PDF

Background: Classification of the type of calcaneal fracture on CT images is essential in driving treatment. However, human-based classification can be challenging due to anatomical complexities and CT image constraints. The use of computer-aided classification system in standard practice is additionally hindered by the availability of training images.

View Article and Find Full Text PDF

The ability to rapidly encode the direction of frequency contour contained in frequency-modulated (FM) sweeps is essential for speech processing, music appreciation, and conspecific communications. Psychophysical evidence points to a common temporal window threshold for human listeners in processing rapid changes in frequency glides. No neural evidence has been provided for the existence of a cortical temporal window threshold underlying the encoding of rapid transitions in frequency glides.

View Article and Find Full Text PDF

Background And Objectives: The calcaneus is the most fracture-prone tarsal bone and injuries to the surrounding tissue are some of the most difficult to treat. Currently there is a lack of consensus on treatment or interpretation of computed tomography (CT) images for calcaneus fractures. This study proposes a novel computer-assisted method for automated classification and detection of fracture locations in calcaneus CT images using a deep learning algorithm.

View Article and Find Full Text PDF

Binaural integration of interaural temporal information is essential for sound source localization and segregation. Current models of binaural interaction have shown that accurate sound localization in the horizontal plane depends on the resolution of phase ambiguous information by across-frequency integration. However, as such models are mostly static, it is not clear how proximate in time binaural events in different frequency channels should occur to form an auditory object with a unique lateral position.

View Article and Find Full Text PDF

Naturally occurring sounds are routinely periodic. The ability to phase-lock to such periodicity facilitates pitch perception and interaural time differences (ITDs) determination in binaural localization. We examined whether deficient pitch processing in individuals with congenital amusia (tone deafness) is accompanied by impaired ability to lateralize musical pitch at auditory periphery and memorize the location of pitch at the working memory level.

View Article and Find Full Text PDF

The ear and brain interact in an orchestrated manner to create sensations of phantom tones that are audible to listeners despite lacking physical presence in original sounds. The relative contribution of peripheral sensory cell activity and cortical mechanisms to phantom hearing remains elusive. The current study addressed the question of whether non-linear components of a complex signal exist that are not captured by the linear combination of cosines in a series.

View Article and Find Full Text PDF

The auditory system encounters motion cues through an acoustic object's movement or rotation of the listener's head in a stationary sound field, generating a wide range of naturally occurring velocities from a few to several hundred degrees per second. The angular velocity of moving acoustic objects relative to a listener is typically slow and does not exceed tens of degrees per second, whereas head rotations in a stationary acoustic field may generate fast-changing spatial cues in the order of several hundred degrees per second. We hypothesized that these two types of systems (i.

View Article and Find Full Text PDF

How brief must a sound be before its pitch is no longer perceived? The uncertainty tradeoff between temporal and spectral resolution (Gabor's principle) limits the minimum duration required for accurate pitch identification or discrimination. Prior studies have reported that pitch can be extracted from sinusoidal pulses as brief as half a cycle. This finding has been used in a number of classic papers to develop models of pitch encoding.

View Article and Find Full Text PDF

Mutation of the human gene superoxide dismutase (hSOD1) is associated with the fatal neurodegenerative disease familial amyotrophic lateral sclerosis (Lou Gehrig's disease). Selective overexpression of hSOD1 in Drosophila motorneurons increases lifespan to 140% of normal. The current study was designed to determine resistance to lifespan decline and failure of sensorimotor functions by overexpressing hSOD1 in Drosophila's motorneurons.

View Article and Find Full Text PDF

Methuselah (mth) is a chromosome 3 Drosophila mutant with an increased lifespan. A large number of studies have investigated the genetic, molecular, and biochemical mechanisms of the mth gene. Much less is known about the effects of mth on preservation of sensorimotor abilities throughout Drosophila's lifespan, particularly in late life.

View Article and Find Full Text PDF

Mutation of the human gene superoxide dismutase (hSOD1) triggers the fatal neurodegenerative motorneuron disorder, familial amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). Broad expression of this gene in Drosophila has no effect on longevity or functional senescence. We show here that restricting expression of human SOD1 primarily to motorneurons of Drosophila has significant effects on optomotor efficiency during in-flight tracking of rapidly moving visual targets.

View Article and Find Full Text PDF

Frequency modulation (FM) is an acoustic feature of nearly all complex sounds. Directional FM sweeps are especially pervasive in speech, music, animal vocalizations, and other natural sounds. Although the existence of FM-selective cells in the auditory cortex of animals has been documented, evidence in humans remains equivocal.

View Article and Find Full Text PDF

The auditory system can encode interaural delays in highpass-filtered complex sounds by phase locking to their slowly modulating envelopes. Spectrotemporal analysis of interaurally time-delayed highpass waveforms reveals the presence of a concomitant interaural level cue. The current study systematically investigated the contribution of time and concomitant level cues carried by positive and negative envelope slopes of a modified sinusoidally amplitude-modulated (SAM) high-frequency carrier.

View Article and Find Full Text PDF

Purpose: This study investigated the ability to use spatial information in mixed-modulated (MM) sounds containing concurrent frequency-modulated (FM) and amplitude-modulated (AM) sounds by exploring patterns of interference when different modulation types originated from different loci as may occur in a multisource acoustic field.

Method: Interaural delay thresholds were measured from 5 normal-hearing adults for an AM sound in the presence of interfering FM and vice versa as a function of interferer modulation rate. In addition, the effects of near versus remote interferer rates, and fixed versus randomized interferer interaural delay, were investigated.

View Article and Find Full Text PDF

Many natural sounds such as speech contain concurrent amplitude and frequency modulation (AM and FM), with the FM components often in the form of directional frequency sweeps or glides. Most studies of modulation coding, however, have employed one modulation type in stationary carriers, and in cases where mixed-modulation sounds have been used, the FM component has typically been confined to an extremely narrow range within a critical band. The current study examined the ability to detect AM signals carried by broad logarithmic frequency sweeps using a 2-alternative forced-choice adaptive psychophysical design.

View Article and Find Full Text PDF

Hierarchical organization of human auditory cortex has been inferred from functional imaging observations that core regions respond to simple stimuli (tones) whereas downstream regions are selectively responsive to more complex stimuli (band-pass noise, speech). It is assumed that core regions code low-level features, which are combined at higher levels in the auditory system to yield more abstract neural codes. However, this hypothesis has not been critically evaluated in the auditory domain.

View Article and Find Full Text PDF

Frequency- and amplitude-modulated (FM and AM) sounds are the building blocks of complex sounds. In the present study, we investigated the ability of human observers to process spatial information in an important class of FM sounds: broadband directional sweeps common in natural communication signals such as speech. The stimuli consisted of linear or logarithmic unidirectional FM pulses that swept either up or down in frequency at various rates.

View Article and Find Full Text PDF

Although it is generally acknowledged that at least two processing streams exist in the primate cortical auditory system, the function of the posterior dorsal stream is a topic of much debate. Recent studies have reported selective activation to auditory spatial change in portions of the human planum temporale (PT) relative to nonspatial stimuli such as pitch changes or complex acoustic patterns. However, previous work has suggested that the PT may be sensitive to another kind of nonspatial variable, namely, the number of auditory objects simultaneously presented in the acoustic signal.

View Article and Find Full Text PDF

We describe two memory-retrieval systems in absolute-pitch (AP) processing and propose existence of a universal internal pitch template to which subpopulations of musicians selectively gain access through the two systems. In Experiment I, AP and control musicians adjusted the frequency of a pure tone to match the pitch of a visually displayed randomly selected musical note. In Experiment II the same subjects vocally produced within 2s the pitch associated with a randomly selected musical note label.

View Article and Find Full Text PDF

The effect of stimulus duration on absolute identification of musical pitch was measured in a single-interval 12-alternative forced-choice task. Stimuli consisted of pure tones selected randomly on each trial from a set of 60 logarithmically spaced musical note frequencies from 65.4 to 1975.

View Article and Find Full Text PDF