Using deep learning models to analyze patients with intracranial tumors, to study the image segmentation and standard results by clinical depiction complications of cerebral edema after receiving radiotherapy. In this study, patients with intracranial tumors receiving computer knife (CyberKnife M6) stereotactic radiosurgery were followed using the treatment planning system (MultiPlan 5.1.
View Article and Find Full Text PDFBackground: To evaluate the lifetime secondary cancer risk (SCR) of stereotactic body radiotherapy (SBRT) using the CyberKnife (CK) M6 system with a lung-optimized treatment (LOT) module for lung cancer patients.
Methods: We retrospectively enrolled 11 lung cancer patients curatively treated with SBRT using the CK M6 robotic radiosurgery system. The planning treatment volume (PTV) and common organs at risk (OARs) for SCR analysis included the spinal cord, total lung, and healthy normal lung tissue (total lung volume - PTV).
This study was performed to examine the quality of planning and treatment modality using a CyberKnife (CK) robotic radiosurgery system with multileaf collimator (MLC)-based plans and IRIS (variable aperture collimator system)-based plans in relation to the dose-response of secondary cancer risk (SCR) in patients with benign intracranial tumors. The study population consisted of 15 patients with benign intracranial lesions after curative treatment using a CyberKnife M6 robotic radiosurgery system. Each patient had a single tumor with a median volume of 6.
View Article and Find Full Text PDF