A new series of mimetic peptides possessing a significant Aβ aggregation modulating effect was reported here. These compounds were obtained based on a molecular modelling study which allowed us to perform a structural-based virtual selection. Monitoring Aβ aggregation by thioflavin T fluorescence and transmission electron microscopy revealed that fibril formation was significantly decreased upon prolonged incubation in presence of the active compounds.
View Article and Find Full Text PDFThe heterochromatin protein 1 (HP1) family is thought to be an important structural component of heterochromatin. HP1 proteins bind via their chromodomain to nucleosomes methylated at lysine 9 of histone H3 (H3K9me). To investigate the role of HP1 in maintaining heterochromatin structure, we used a dominant negative approach by expressing truncated HP1alpha or HP1beta proteins lacking a functional chromodomain.
View Article and Find Full Text PDFChanges in chromatin structure are a key aspect in the epigenetic regulation of gene expression. We have used a lac operator array system to visualize by light microscopy the effect of heterochromatin protein 1 (HP1) alpha (HP1alpha) and HP1beta on large-scale chromatin structure in living mammalian cells. The structure of HP1, containing a chromodomain, a chromoshadow domain, and a hinge domain, allows it to bind to a variety of proteins.
View Article and Find Full Text PDFHeterochromatin proteins are thought to play key roles in chromatin structure and gene regulation, yet very few genes have been identified that are regulated by these proteins. We performed large-scale mapping and analysis of in vivo target loci of the proteins HP1, HP1c, and Su(var)3-9 in Drosophila Kc cells, which are of embryonic origin. For each protein, we identified approximately 100-200 target genes among >6000 probed loci.
View Article and Find Full Text PDFMost chromatin in interphase nuclei is part of condensed chromatin domains. Previous work has indicated that transcription takes place primarily at the surface of chromatin domains, that is, in the perichromatin region. It is possible that genes inside chromatin domains are silenced due to inaccessibility to macromolecular components of the transcription machinery.
View Article and Find Full Text PDF