Publications by authors named "I de Sutter"

Objective: Glycerophospholipids and sphingolipids are structurally heterogeneous due to differences in the O- and N-linked fatty acids and head groups. Sphingolipids also show a heterogeneity in their sphingoid base composition which up to now has been little appreciated. The aim of this study was to investigate the association of certain glycerophospholipid and sphingolipid species with stable coronary artery disease (CAD) and acute myocardial infarction (AMI).

View Article and Find Full Text PDF

Objective: Low high-density lipoprotein (HDL) cholesterol and loss of atheroprotective functions of HDL are associated with coronary artery disease (CAD). Here, we investigated the associations of HDL phospholipids with acute and stable CAD as well as with the anti-apoptotic activity of HDL.

Methods: 49 species of phosphatidylcholines (PCs), lysophosphatidylcholines and sphingomyelins (SMs) as well as three species of sphingosine-1-phosphate (S1P) were quantified by liquid chromatography - mass spectrometry in HDL isolated from 22 healthy subjects as well as 23 and 22 patients with stable CAD and acute coronary syndrome (ACS), respectively.

View Article and Find Full Text PDF

Purpose: Biochemical and genetic analyses established a contribution of lipid metabolism to AMD pathology. Paraoxonase 1 (PON1) is an antioxidative protein involved in high density lipoprotein (HDL) function and was found to be associated with AMD. Here, we used Pon1(-/-) mice to study the influence of PON1 on retinal physiology and to reveal the potential impact of PON1 on AMD etiology.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) mediates several cytoprotective functions of HDL. apoM acts as a S1P binding protein in HDL. Erythrocytes are the major source of S1P in plasma.

View Article and Find Full Text PDF

Background: Apolipoprotein M (apoM) has been identified as a specific sphingosine-1-phosphate (S1P) binding protein of HDL.

Objectives And Methods: To investigate the in vivo effects of disturbed apoM or HDL metabolism we quantified S1P and apoM in plasmas of wild-type, apoM-knock-out, and apoM transgenic mice as well as 50 patients with seven different monogenic disorders of HDL metabolism and their 51 unaffected relatives.

Results: Compared to wild type mice, S1P plasma levels in apoM knock-out and apoM transgenic mice were decreased by 30% and increased by 270%, respectively.

View Article and Find Full Text PDF