The disruption of gut microbiota caused by antibiotics favors the intestinal colonization of - a Gram-positive, spore-forming anaerobic bacterium that causes potentially fatal gastrointestinal infections. In an endeavor to elucidate the complexities of the gut-brain axis in the context of infection (CDI), a murine model has been used to investigate the potential effects of antibiotic administration and subsequent colonization by , as well as the impact of three different 10-day treatments (metronidazole, probiotics, and fecal microbiota transplantation), on the cecal metabolome for the first time. This follows our previous research which highlighted the metabolic effect of CDI and these treatments in the brain and employs the same four different metabolomics-based methods (targeted GC-MS/MS, targeted HILIC-MS/MS, untargeted RP-LC-HRMS/MS and untargeted GC-MS).
View Article and Find Full Text PDFThis paper explores the role of botulinum neurotoxin in aiding fracture recovery through temporary muscle paralysis. Specifically, it investigates the effects of botulinum neurotoxin-induced paralysis of the sternocleidomastoid muscle on clavicle fractures in rats. The research aims to assess safety, effectiveness, and the impact on fracture healing.
View Article and Find Full Text PDFinfection (CDI) is responsible for an increasing number of cases of post-antibiotic diarrhea worldwide, which has high severity and mortality among hospitalized elderly patients. The disruption of gut microbiota due to antibacterial medication facilitates the intestinal colonization of . In the present study, a murine model was used to investigate the potential effects of antibiotic administration and subsequent colonization by , as well as the effects of three different 10-day treatments (metronidazole, probiotics, and fecal microbiota transplantation), on the brain metabolome for the first time.
View Article and Find Full Text PDFRegular physical exercise has been investigated as a primary preventive measure of several chronic diseases and premature death. Moreover, it has been shown to synchronize responses across multiple organs. In particular, hepatic tissue has proven to be a descriptive matrix to monitor the effect of physical activity.
View Article and Find Full Text PDFIn this study, we aim to investigate the effective dose of botulinum neurotoxin A that results in paralysis of the sternocleidomastoid muscle for a minimum duration of 28 days in Wistar rats. This research is the first in a series of studies to investigate the value of botulinum toxin A in the healing of clavicle fractures through the temporary paralysis of the sternocleidomastoid. A surgical incision was made under general anaesthesia, and botulinum neurotoxin A in respective doses of 4 and 6 international units (IU) or normal saline in equivalent volumes were injected directly into the exposed muscle.
View Article and Find Full Text PDF