Publications by authors named "I Yazawa"

Background: Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a disease responsible for cognitive impairment in adult humans. It is caused by mutations in the colony stimulating factor 1 receptor gene (CSF1R) or alanyl-transfer (t) RNA synthetase 2 (AARS2) gene and affects brain white matter. Settlement of stages of the pathological brain lesions (Oyanagi et al.

View Article and Find Full Text PDF

To date, research on the role of the brainstem and spinal cord in motor behavior has relied on preparations of the neonatal rodent spinal cord, with or without the brainstem; their spatial and temporal scope are subject to technical limitations imposed by low oxygen tension in deep tissues. Therefore, we created an arterially perfused preparation that allowed us to investigate functional interactions in the CNS from the neonatal to adult period. Decerebrated rodents were kept alive via total artificial cardiopulmonary bypass for extracorporeal circulation; the plasma oxygen and ion components needed for survival were supplied through the blood vessels.

View Article and Find Full Text PDF

Proteinase-activated receptor-1 (PAR1) is expressed in astrocytes of various brain regions, and its activation is involved in the modulation of neuronal activity. Here, we report effects of PAR1 selective agonist TFLLR on respiratory rhythm generation in brainstem-spinal cord preparations. Preparations were isolated from newborn rats (P0-P4) under deep isoflurane anesthesia and were transversely cut at the rostral medulla.

View Article and Find Full Text PDF
Article Synopsis
  • As blood oxygen levels drop (hypoxemia), mammals adjust their breathing and heart functions to supply oxygen to critical organs, primarily using carotid bodies as sensors.
  • New research highlights that spinal thoracic sympathetic preganglionic neurons act as additional oxygen sensors, responding to low oxygen levels and influencing respiratory and cardiovascular activity even when traditional sensors are absent.
  • These spinal oxygen sensors utilize a specific mechanism involving neuronal nitric oxide synthase 1 (NOS1) and NADPH oxidase (NOX), which plays a crucial role in managing the body's response to low oxygen situations and could have implications for various health conditions and crises.
View Article and Find Full Text PDF

Astrocytes are thought to play a crucial role in providing structure to the spinal cord and maintaining efficient synaptic function and metabolism because their fine processes envelop the synapses of neurons and form many neuronal networks within the central nervous system (CNS). To investigate whether putative astrocytes and putative neurons distributed on the ventral horn play a role in the modulation of lumbar locomotor central pattern generator (CPG) networks, we used extracellular recording and optical imaging techniques and recorded the neural output from the left L5 ventral root and the calcium activity of putative astrocytes and neurons in the L5 ventral horn at the same time when activating an isolated L1-L5 spinal cord preparation from rats aged 0-2 days. Optical measurements detected cells that showed a fluorescence intensity change under all experimental conditions, namely, (1) 5-HT + NMDA, (2) TTX, and (3) TTX + Low K.

View Article and Find Full Text PDF