Background: Postural orthostatic tachycardia syndrome (POTS) is a heterogeneous condition predominantly affecting autonomic control of the cardiovascular system. Its extensive symptom diversity implies multi-organ involvement that interacts in ways still requiring full exploration. Current understanding of POTS pathophysiology suggests alterations in the renin-angiotensin-aldosterone system as a possible contributing factor.
View Article and Find Full Text PDFAtherosclerotic plaques are characterized by an accumulation and subsequent oxidation of LDL, resulting in adaptive immune responses against formed or exposed neoepitopes of the LDL particle. Autoantibodies against native p210, the 3136-3155 amino acid sequence of the LDL protein apolipoprotein B-100 (apoB100) are common in humans and have been associated with less severe atherosclerosis and decreased risk for cardiovascular events in clinical studies. However, whether apoB100 native p210 autoantibodies play a functional role in atherosclerosis is not known.
View Article and Find Full Text PDFThe study aimed to estimate vitamin D intake and plasma/serum 25-hydroxyvitamin D (25(OH)D) concentrations, investigate determinants of 25(OH)D concentrations and compare two 25(OH)D assays. We conducted two nationwide cross-sectional studies in Sweden with 206 school children aged 10-12 years and 1797 adults aged 18-80 years ( 268 provided blood samples). A web-based dietary record was used to assess dietary intake.
View Article and Find Full Text PDFObjective: Groups with low socio-economic status have less healthy diets and higher prevalence of non-communicable diseases. Using the latest Swedish national dietary survey data, we developed a healthy eating index and a diet diversity score with the aim to explore associations between the scores and socio-demographic factors.
Design: Cross-sectional national dietary survey.
The pollen extract Cernitin® is widely used for treatment of benign prostatic hyperplasia (BPH) and non-bacterial chronin prostatitis. However, little is known about the underlying molecular mechanisms to explain the clinical effects of Cernitin®. In this study, we sought to investigate the cellular mechanisms by which Cernitin® induces its effects on human prostatic cell lines BPH-1 and WPMY-1 and primary human peripheral blood mononuclear cells (hPBMCs) in vitro.
View Article and Find Full Text PDF