Publications by authors named "I W Cheney"

Rapid antigen test (RAT) is widely used for SARS-CoV-2 infection diagnostics. However, test sensitivity has decreased recently due to the emergence of the Omicron variant and its sublineages. Here we developed a panel of SARS-CoV-2 nucleocapsid protein (NP) specific mouse monoclonal antibodies (mAbs) and assessed their sensitivity and specificity to important SARS-CoV-2 variants.

View Article and Find Full Text PDF

A novel series of highly potent substituted pyridone Pim-1 kinase inhibitors is described. Structural requirements for in vitro activity are outlined as well as a complex crystal structure with the most potent Pim-1 inhibitor reported (IC(50)=50 nM). A hydrogen bond matrix involving the Pim-1 inhibitor, two water molecules, and the catalytic core, together with a potential weak hydrogen bond between an aromatic hydrogen on the R(1) phenyl ring and a main-chain carbonyl of Pim-1, accounts for the overall potency of this inhibitor.

View Article and Find Full Text PDF

Uridine-cytidine nucleoside kinase 2 (UCK2) is the rate-limiting enzyme in the pyrimidine-nucleotide salvage pathway. UCK2 catalyzes the phosphorylation of the natural ribonucleosides cytidine and uridine to cytidine 5'-monophosphate (CMP) and uridine 5'-monophosphate (UMP), respectively, and activates several important frontline antimetabolite drugs. The present contribution reports the rapid crystal structure determination of human UCK2 complexed with a magnesium ion and the reaction products adenosine 5'-diphosphate (ADP) and CMP.

View Article and Find Full Text PDF

Picornaviruses utilize virally encoded RNA polymerase and a uridylylated protein primer to ensure replication of the entire viral genome. The molecular details of this mechanism are not well understood due to the lack of structural information. We report the crystal structure of human rhinovirus 16 3D RNA-dependent RNA polymerase (HRV16 3Dpol) at a 2.

View Article and Find Full Text PDF

Picornaviral RNA replication utilizes a small virus-encoded protein, termed 3B or VPg, as a primer to initiate RNA synthesis. This priming step requires uridylylation of the VPg peptide by the viral polymerase protein 3D(pol), in conjunction with other viral or host cofactors. In this study, we compared the viral specificity in 3D(pol)-catalyzed uridylylation reactions between poliovirus (PV) and human rhinovirus 16 (HRV16).

View Article and Find Full Text PDF