Laser speckle imaging (LSI) techniques have emerged as a promising method for visualizing functional blood vessels and tissue perfusion by analyzing the speckle patterns generated by coherent light interacting with living biological tissue. These patterns carry important biophysical tissue information including blood flow dynamics. The noninvasive, label-free, and wide-field attributes along with relatively simple instrumental schematics make it an appealing imaging modality in preclinical and clinical applications.
View Article and Find Full Text PDFBackscattered circularly polarized light from turbid media consists of helicity-flipped and helicity-preserved photon sub-populations (i.e., photons of perpendicular and parallel circular handedness).
View Article and Find Full Text PDFThe dominant consequence of irradiating biological systems is cellular damage, yet microvascular damage begins to assume an increasingly important role as the radiation dose levels increase. This is currently becoming more relevant in radiation medicine with its pivot towards higher-dose-per-fraction/fewer fractions treatment paradigm (e.g.
View Article and Find Full Text PDFDynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is emerging as a valuable tool for non-invasive volumetric monitoring of the tumor vascular status and its therapeutic response. However, clinical utility of DCE-MRI is challenged by uncertainty in its ability to quantify the tumor microvasculature ([Formula: see text] scale) given its relatively poor spatial resolution (mm scale at best). To address this challenge, we directly compared DCE-MRI parameter maps with co-registered micron-scale-resolution speckle variance optical coherence tomography (svOCT) microvascular images in a window chamber tumor mouse model.
View Article and Find Full Text PDFThe effects of scatterer size and scattering coefficient on backscattered linearly and circularly polarized light are investigated through Stokes polarimetry. High-SNR polarization modulation/synchronous detection measurements are corroborated by polarization-sensitive Monte Carlo simulations. Circular degree of polarization (DOP) is found to be sensitive to scatterer size, but is equivocal at times due to helicity flipping effects; linear DOP appears to be mostly dependent on the medium scattering coefficient.
View Article and Find Full Text PDF