Using spin-echo nuclear magnetic resonance in the model transverse field Ising system TmVO_{4}, we show that low frequency quantum fluctuations at the quantum critical point have a very different effect on ^{51}V nuclear spins than classical low-frequency noise or fluctuations that arise at a finite temperature critical point. Spin echoes filter out the low-frequency classical noise but not the quantum fluctuations. This allows us to directly visualize the quantum critical fan and demonstrate the persistence of quantum fluctuations at the critical coupling strength in TmVO_{4} to high temperatures in an experiment that remains transparent to finite temperature classical phase transitions.
View Article and Find Full Text PDFUniaxial pressure provides an efficient approach to control charge density waves in YBaCuO. It can enhance the correlation volume of ubiquitous short-range two-dimensional charge-density-wave correlations, and induces a long-range three-dimensional charge density wave, otherwise only accessible at large magnetic fields. Here, we use x-ray diffraction to study the strain dependence of these charge density waves and uncover direct evidence for a form of competition between them.
View Article and Find Full Text PDFJ Magn Reson
October 2021
We investigate the effectiveness of the Inverse Laplace Transform (ILT) analysis method to extract the distribution of relaxation rates from nuclear magnetic resonance data with stretched exponential relaxation. Stretched-relaxation is a hallmark of a distribution of relaxation rates, and an analytical expression exists for this distribution for the case of a spin-1/2 nucleus. We compare this theoretical distribution with those extracted via the ILT method for several values of the stretching exponent and at different levels of experimental noise.
View Article and Find Full Text PDFIn order to identify the mechanism responsible for the formation of charge-density waves (CDW) in cuprate superconductors, it is important to understand which aspects of the CDW's microscopic structure are generic and which are material-dependent. Here, we show that, at the local scale probed by NMR, long-range CDW order in YBaCuO is unidirectional with a commensurate period of three unit cells (λ = 3b), implying that the incommensurability found in X-ray scattering is ensured by phase slips (discommensurations). Furthermore, NMR spectra reveal a predominant oxygen character of the CDW with an out-of-phase relationship between certain lattice sites but no specific signature of a secondary CDW with λ = 6b associated with a putative pair-density wave.
View Article and Find Full Text PDFThe present study characterized the psychiatric diagnoses and symptoms that led to the administration of antipsychotic medications in children and adolescents with cancer, and to evaluate the benefits and tolerability of these drugs in a large hospital-based pediatric hematology-oncology practice. Efficacy and adverse effects of two second-generation antipsychotics were retrospectively analyzed in 43 patients 2.9-19.
View Article and Find Full Text PDF