Publications by authors named "I Vilotijevic"

Picolines and quinaldines are valuable building blocks and intermediates in the synthesis of natural products and pharmaceuticals. Functionalization of the methyl group in picolines and quinaldines under mild conditions is challenging. We report that the concept of latent pronucleophiles enables Lewis base catalysed allylation of picolines and quinaldines with allylic fluorides starting from silylated picolines and quinaldines.

View Article and Find Full Text PDF

Tuberculosis, caused by Mycobacterium tuberculosis, remains a major public health concern, demanding new antibiotics with innovative therapeutic principles due to the emergence of resistant strains. Benzothiazinones (BTZs) have been developed to address this problem. However, an unprecedented in vivo biotransformation of BTZs to hydride-Meisenheimer complexes has recently been discovered.

View Article and Find Full Text PDF

Targeting protein kinases that regulate signalling pathways in inflammation is an effective pharmacological approach to alleviate uncontrolled inflammatory diseases. In this context, the natural product indirubin and its 6-bromo-substituted analogue 6-bromoindirubin-3 -glycerol-oxime ether (6BIGOE; 1) were identified as potent inhibitors of glycogen synthase kinase-3β (GSK-3β). These inhibitors suppress the release of pro-inflammatory cytokines and prostaglandins (PG) from human monocytes.

View Article and Find Full Text PDF

Trifluoro- and trichloroacetamides serving as pronucleophiles undergo enantioselective Lewis base catalyzed N-allylation with Morita-Baylis-Hillman carbonates to produce enantioenriched β-amino acid derivatives. The reactions proceed as a kinetic resolution to give the allylation products and the remaining carbonates in good yields and high enantioselectivity. The obtained products are amenable to diastereoselective derivatization to produce a library of spiro-isoxazoline lactams.

View Article and Find Full Text PDF

Silyl carbamates, latent pronucleophile surrogates of carbamates, undergo allylation using allylic fluorides in the presence of common Lewis base catalysts. The reactions are rendered enantioselective in the presence of chiral Lewis base catalysts and produce suitably protected derivatives of enantioenriched chiral β-amino acids. The design of the latent pronucleophile featuring both a silyl group and an electron-deficient carbamate is instrumental in lowering the nucleophilicity of nitrogen and enabling enantioselective allylation in the presence of chiral cinchona alkaloid-based catalysts.

View Article and Find Full Text PDF