The effects of neural progenitor and hemopoietic stem cells on C6 glioma cells were studied in in vivo and in vitro experiments. Considerable inhibition of proliferation during co-culturing of glioma cells with neural progenitor cells was revealed by quantitative MTT test and bromodeoxyuridine incorporation test. Labeled neural progenitor and hemopoietic stem cells implanted into the focus of experimental cerebral glioma C6 survive in the brain of experimental animals for at least 7 days, migrate with glioma cells, and accumulate in the peritumoral space.
View Article and Find Full Text PDFHuman ensheating neural stem cells of the olfactory epithelium were transplanted to adult male rats immediately after contusion trauma of the spinal cord at T9 level rostrally and caudally to the injury. Voluntary movements (by a 21-point BBB scale), rota-rod performance, and walking along a narrowing beam were monitored weekly over 60 days. In rats receiving cell transplantation, the mean BBB score significantly increased by 11% by the end of the experiment.
View Article and Find Full Text PDFIn experiments on rats with lateral TVIII hemisection of the spinal cord and transplantation of ensheating olfactory cells, we studied structural changes at the lesion site and adjacent rostral and dorsal regions of the spinal cord. The state of oligodendrocytes and myelin fibers and motor function in experimental animal were analyzed. Open field testing (BBB test) showed that motor functions steadily increased (by 13% on average) within the interval from day 21 to day 53 after transplantation.
View Article and Find Full Text PDFThis study tested the hypothesis that adaptation to intermittent hypoxia (AIH) can prevent overproduction of nitric oxide (NO) in brain and neurodegeneration induced by beta-amyloid (Aβ) toxicity. Rats were injected with a Aβ protein fragment (25-35) into the nucleus basalis magnocellularis. AIH (simulated altitude of 4000 m, 14 days, 4h daily) was produced prior to the Aβ injection.
View Article and Find Full Text PDFWe report here studies addressing the possibility of preventing neurodegenerative changes in the brain using adaptation to periodic hypoxia in rats with experimental Alzheimer's disease induced by administration of the neurotoxic peptide fragment of beta-amyloid (Ab) into the basal magnocellular nucleus. Adaptation to periodic hypoxia was performed in a barochamber (4000 m, 4 h per day, 14 days). The following results were obtained 15 days after administration of Ab.
View Article and Find Full Text PDF