Non-melanoma skin cancer (NMSC) is one of the most prevalent cancers, leading to significant mortality rates due to limited treatment options and a lack of effective therapeutics. Janus kinase (JAK1), a non-receptor tyrosine kinase family member, is involved in various cellular processes, including differentiation, cell proliferation and survival, playing a crucial role in cancer progression. This study aims to provide a more effective treatment for NMSC by concurrently silencing the JAK1 gene and administering 5-Fluorouracil (5-FU) using liposome nanocomplexes as delivery vehicles.
View Article and Find Full Text PDFChronic wounds are often caused by diabetes and present a challenging clinical problem due to vascular problems leading to ischemia. This inhibits proper wound healing by delaying inflammatory responses and angiogenesis. To address this problem, we have developed injectable particle-loaded hydrogels which sequentially release Granulocyte-macrophage- colony-stimulating-factor (GM-CSF) and Vascular endothelial growth factor (VEGF) encapsulated in polycaprolactone-lecithin-geleol mono-diglyceride hybrid particles.
View Article and Find Full Text PDFObjective: Nasal glioma, also known as nasal glial heterotopia, is a rare tumor-like lesion that often affects newborns or infants with no hereditary predisposition.
Case Report: A 4-year-old child with a growth on the nasal dorsum since birth was diagnosed with nasal glial heterotopia/nasal glioma. The lesion showed a sclerotic fibroma/collagenoma-like storiform pattern with entrapped glial tissue that was S100 and GFAP positive.
Neurofibromatosis type 1 (NF1) is an autosomal dominant disease that affects the development and growth of various tissues. NF1 is a major risk factor for the development of malignancies, particularly malignant peripheral nerve sheath tumors, optic gliomas, and leukemia. NF1 encodes a neurofibromin.
View Article and Find Full Text PDFCranial tissue models are a widely used model to show the bone repair and the regeneration ability of candidate biomaterials for tissue engineering purposes. Until now, efficacy studies of different biomaterials for calvarial defect bone regeneration have been reported, generally in small animal models. This paper offers a versatile, reliable, and reproducible surgical method for creating a critical-sized cranial defect in rats including critical steps and tried-and-tested tips.
View Article and Find Full Text PDF