Publications by authors named "I V Zueva"

Alzheimer's disease (AD) poses a significant public health issue. Despite the fact that today there are several methods of maintenance therapy, one of the most widely used methods is designed to correct the deficiency of acetylcholine. In the search for new potential inhibitors of cholinesterase enzymes, eight new derivatives of 3-oxo- or 2,3-indolo-triterpenic acid conjugated with amino-quinuclidine bicyclic cores were designed and synthesized.

View Article and Find Full Text PDF
Article Synopsis
  • * The study introduces new "fine-tuned" ChE inhibitors called PAMAM-calix-dendrimers, which were designed and synthesized with varying terminal fragments.
  • * Experimental results show that these dendrimers effectively inhibit human acetylcholinesterase and butyrylcholinesterase, with their activity linked to their structure, paving the way for future drug development.
View Article and Find Full Text PDF

Objective: Assessment of plasma and salivary acetylcholinesterase (AChE) activity in patients with amyotrophic lateral sclerosis (ALS) and in an animal model of the disease.

Material And Methods: We studied 41 participants, aged 31 to 71 years, including 17 patients with diagnosed ALS (ALS group, average age 62.3±2.

View Article and Find Full Text PDF

A central event in the pathogenesis of Alzheimer's disease (AD) is the accumulation of senile plaques composed of aggregated amyloid-β (Aβ) peptides. The main class of drugs currently used for the treatment of AD are the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. In this study, it has been shown that Aβ augmented AChE activity in vitro, maximum activation of 548 ± 5% was achieved following 48 h of incubation with 10 μM of Aβ, leading to a 7.

View Article and Find Full Text PDF

A series of new uncharged conjugates of adenine, 3,6-dimetyl-, 1,6-dimethyl- and 6-methyluracil with 1,2,4-triazole-3-hydroxamic and 1,2,3-triazole-4-hydroxamic acid moieties were synthesized and studied as reactivators of organophosphate-inhibited cholinesterase. It is shown that triazole-hydroxamic acids can reactivate acetylcholinesterase (AChE) inhibited by paraoxon (POX) in vitro, offering reactivation constants comparable to those of pralidoxime (2-PAM). However, in contrast to 2-PAM, triazole-hydroxamic acids demonstrated the ability to reactivate AChE in the brain of rats poisoned with POX.

View Article and Find Full Text PDF