This work presents the method of synthesis and physicochemical characterization of isothiourea and cinnamic acid original derivative α-cyano-4-hydroxycinnamate 1-cyclohexanoy-l-2-ethylisothiourea (T1114). In studies of the cytotoxic and antitumor activity of T1114, it has been found that the combination in one molecular structure of NOS-inhibitory fragment (1-cyclohexanoyl-2-ethylisothiourea) and a fragment inhibiting monocarboxylate lactate transporters (MCT) (α-cyano-4-hydroxycinnamic acid) does not modify the cytotoxic activity of bifunctional NOS/MCT-inhibitor T1114 in vitro. But in vivo inhibition of NOS and MCT is able to realize effects on the tumor microenvironment and hypoxic tumor cells.
View Article and Find Full Text PDFThe physical characteristics of a supramolecular gel are greatly influenced by the nature and arrangement of functional groups in the gelator. This work focuses on the impact of the functional groups, specifically the hydroxyl group, on the stimuli-responsive properties of a gel. We used a -symmetric benzene-1,3,5-tricarboxamide (BTA) platform, which was attached to the methyl ester of phenylalanine (MPBTA) and tyrosine (MTBTA).
View Article and Find Full Text PDFPreviously, we showed the antitumor activity of the new NOS/PDK inhibitor T1084 (1-isobutanoyl-2-isopropylisothiourea dichloroacetate). The present study included an assessment of in vitro cytotoxicity against human malignant and normal cells according to the MTT-test and in vivo antitumor effects in solid tumor models in comparison with precursor compounds T1023 (NOS inhibitor; 1-isobutanoyl-2-isopropylisothiourea hydrobromide) and Na-DCA (PDK inhibitor; sodium dichloroacetate), using morphological, histological, and immunohistochemical methods. The effects of T1084 and T1023 on the in vitro survival of normal (MRC-5) and most malignant cells (A375, MFC-7, K562, OAW42, and PC-3) were similar and quantitatively equal.
View Article and Find Full Text PDFThis paper describes a gradual transition of charge transport across molecular junctions from coherent to incoherent tunneling by increasing the number and polarizability of halide substituents of phenyl-terminated aliphatic monolayers of the form S(CH)OPhX, X = F, Cl, Br, or I; = 0, 1, 2, 3, or 5. In contrast to earlier work where incoherent tunneling was induced by introducing redox-active groups or increasing the molecular length, we show that increasing the polarizability, while keeping the organization of the monolayer structure unaltered, results in a gradual change in the mechanism of tunneling of charge carriers where the activation energy increased from 23 meV for = 0 (associated with coherent tunneling) to 257 meV for = 5 with X = Br (associated with incoherent tunneling). Interestingly, this increase in incoherent tunneling rate with polarizability resulted in an improved molecular diode performance.
View Article and Find Full Text PDF