Biomolecules
August 2024
The enzymatic synthesis of nucleoside derivatives is an important alternative to multi-step chemical methods traditionally used for this purpose. Despite several undeniable advantages of the enzymatic approach, there are a number of factors limiting its application, such as the limited substrate specificity of enzymes, the need to work at fairly low concentrations, and the physicochemical properties of substrates-for example, low solubility. This research conducted by our group is dedicated to the advantages and limitations of using purine nucleoside phosphorylases (PNPs), the main enzymes for the metabolic reutilization of purines, in the synthesis of modified nucleoside analogues.
View Article and Find Full Text PDFModification of DNA aptamers is aimed at increasing their thermodynamic stability, and improving affinity and resistance to biodegradation. G-quadruplex DNA aptamers are a family of affinity ligands that form non-canonical DNA assemblies based on a G-tetrads stack. Modification of the quadruplex core is challenging since it can cause complete loss of affinity of the aptamer.
View Article and Find Full Text PDFCurrently, oligonucleotide therapy has emerged as a new paradigm in the treatment of human diseases. In many cases, however, therapeutic oligonucleotides cannot be used directly without modification. Chemical modification or the conjugation of therapeutic oligonucleotides is required to increase their stability or specificity, improve their affinity or inhibitory characteristics, and address delivery issues.
View Article and Find Full Text PDFIn this work, a comparative analysis of the conditions of transglycosylation reactions catalyzed by E. coli nucleoside phosphorylases was carried out, and the optimal conditions for the formation of various nucleosides were determined. Under the optimized conditions of transglycosylation reaction, fluorine-containing derivatives of N-benzyl-2'-deoxyadenosine, potential inhibitors of replication of enteroviruses in a cell, were obtained starting from the corresponding ribonucleosides.
View Article and Find Full Text PDFOligonucleotide-peptide conjugates (OPCs) are a promising class of biologically active compounds with proven potential for improving nucleic acid therapeutics. OPCs are commonly recognized as an efficient instrument to enhance the cellular delivery of therapeutic nucleic acids. In addition to this application field, OPCs have an as yet unexplored potential for the post-SELEX optimization of DNA aptamers.
View Article and Find Full Text PDF