The development of new synthetic strategies to introduce and control chirality in inorganic nanostructures has been highly stimulated by the broad spectrum of potential applications of these exiting nanomaterials. Molybdenum disulfide is among the most investigated transition metal dichalcogenides due to its promising properties for applications that spread from optoelectronic to spintronic. Herein, we report a new two-step approach for the production of chiroptically active semiconductor 2H MoS nanosheets with chiral morphology based on the manipulation of their crystallographic structure.
View Article and Find Full Text PDFIn this paper, the local bonding structure in amorphous zinc tin oxide (a-ZTO) is probed using a combination of XANES and EXAFS techniques at the Zn and Sn K-edges to gain insight into charge carrier generation in the material. a-ZTO is prepared using two growth methods; spray pyrolysis and magnetron sputtering. It is seen that a-ZTO grown by magnetron sputtering shows no changes in the chemical environment as the cation ratio is varied; meanwhile, XANES analysis of spray pyrolysis grown samples shows alterations to spectra likely due to the effects caused by different precursors.
View Article and Find Full Text PDFIn this report, 38 nm-thick amorphous zinc-tin oxide (a-ZTO) films were deposited by radio frequency magnetron cosputtering. a-ZTO films were annealed by in situ monitoring of the sheet resistance improvements during the annealing process. A sharp drop in the slope of the sheet resistance curve was observed.
View Article and Find Full Text PDFAmorphous transparent conducting oxides (a-TCOs) have seen substantial interest in recent years due to the significant benefits that they can bring to transparent electronic devices. One such material of promise is amorphous ZnSnO (a-ZTO). a-ZTO possesses many attractive properties for a TCO such as high transparency in the visible range, tunable charge carrier concentration, electron mobility, and only being composed of common and abundant elements.
View Article and Find Full Text PDFSb is a three-dimensional Peierls insulator. The Peierls instability gives rise to doubling of the translational period along the [111] direction and alternating van der Waals and covalent bonding between (111) atomic planes. At the (111) surface of Sb, the Peierls condition is violated, which in theory can give rise to properties differing from the bulk.
View Article and Find Full Text PDF