Publications by authors named "I V Sazanovich"

The Blue Light Using FAD (BLUF) photoreceptor utilizes a noncovalently bound FAD to absorb light and trigger the initial ultrafast events in receptor activation. FAD undergoes 1 and 2 electron reduction as an enzyme redox cofactor, and studies on the BLUF photoreceptor PixD revealed the formation of flavin radicals (FAD and FADH) during the photocycle, supporting a general mechanism for BLUF operation that involves PCET from a conserved Tyr to the oxidized FAD. However, no radical intermediates are observed in the closely related BLUF proteins AppA and BlsA, and replacing the conserved Tyr with fluoro-Tyr analogs that increase the acidity of the phenol OH has a minor effect on AppA photoactivation in contrast to PixD where the photocycle is halted at FAD.

View Article and Find Full Text PDF

Donor-bridge-acceptor complexes (D-B-A) are important model systems for understanding of light-induced processes. Here, we apply two-color two-dimensional infrared (2D-IR) spectroscopy to D-B-A complexes with a -Pt(II) acetylide bridge (D-C≡C-Pt-C≡C-A) to uncover the mechanism of vibrational energy redistribution (IVR). Site-selective C isotopic labeling of the bridge is used to decouple the acetylide modes positioned on either side of the Pt-center.

View Article and Find Full Text PDF

The controlled aggregation of organic chromophores into supramolecular structures offers a way to control and tune photocatalytic activity. However, the underlying mechanisms of charge transfer and accumulation are still unclear. Time-resolved vibrational spectroscopy is a powerful structural probe for studying photogenerated intermediates.

View Article and Find Full Text PDF

Nitrophenols are atmospheric pollutants found in brown carbon aerosols produced by biomass burning. Absorption of solar radiation by these nitrophenols contributes to atmospheric radiative forcing, but quantifying this climate impact requires better understanding of their photochemical pathways. Here, the photochemistry of near-UV (λ = 350 nm) excited -nitrophenol in aqueous solution is investigated using transient absorption spectroscopy and time-resolved infrared spectroscopy over the fs to μs time scale to characterize the excited states, intermediates, and photoproducts.

View Article and Find Full Text PDF

The DNA binding and cellular uptake of the lambda enantiomer of two bis-tetraazaphenanthrene (TAP) Ru(II) polypyridyl complexes containing either a linear dppn () or a hooked bdppz () benzodipyridophenazine ligand are reported, and the role of different charge-transfer states of the structural isomers in the photo-oxidation of guanine is explored. Both complexes possess characteristic metal-to-ligand charge-transfer (MLCT) bands between 400 and 500 nm and emission at ca. 630 nm in an aerated aqueous solution.

View Article and Find Full Text PDF