Introduction: Parkinson's disease (PD) is commonly characterized by severe dopamine (DA) depletion within the substantia nigra (SN) leading to a myriad of motor and non-motor symptoms. One underappreciated and prevalent non-motor symptom, Parkinson's disease-associated psychosis (PDAP), significantly erodes patient and caregiver quality of life yet remains vastly understudied. While the gold standard pharmacotherapy for motor symptoms Levodopa (LD) is initially highly effective, it can lead to motor fluctuations like LD-induced dyskinesia (LID) and non-motor fluctuations such as intermittent PDAP.
View Article and Find Full Text PDFProper functioning of the nervous system requires precise neuronal connections at subcellular domains, which can be achieved by projection of axons or dendrites to subcellular domains of target neurons. Here we studied subcellular-specific targeting of dendrites and axons in the mushroom body (MB), where mushroom body output neurons (MBONs) and local dopaminergic neurons (DAN) project their dendrites and axons, respectively, to specific compartments of MB axons. Through genetic ablation, we demonstrate that compartment-specific targeting of MBON dendrites and DAN axons involves mutual repulsion of MBON dendrites and/or DAN axons between neighboring compartments.
View Article and Find Full Text PDFAdeno-associated virus (AAV)-based gene therapy has enjoyed great successes over the past decade, with Food and Drug Administration-approved therapeutics and a robust clinical pipeline. Nonetheless, barriers to successful translation remain. For example, advanced age is associated with impaired brain transduction, with the diminution of infectivity depending on anatomical region and capsid.
View Article and Find Full Text PDFAlpha-synuclein (αSyn) aggregation and the formation of Lewy pathology (LP) is a foundational pathophysiological phenomenon in synucleinopathies. Delivering therapeutic single-chain and single-domain antibodies that bind pathogenic targets can disrupt intracellular aggregation. The fusion of antibody fragments to a negatively-charged proteasomal targeting motif (PEST) creates bifunctional constructs that enhance both solubility and turnover.
View Article and Find Full Text PDF