Publications by authors named "I V Pentin"

The paper presents the experimental results of studying the dynamics of electron energy relaxation in structures made of thin (d ≈ 6 nm) disordered superconducting vanadium nitride (VN) films converted to a resistive state by high-frequency radiation and transport current. Under conditions of quasi-equilibrium superconductivity and temperature range close to critical (~ T), a direct measurement of the energy relaxation time of electrons by the beats method arising from two monochromatic sources with close frequencies radiation in sub-THz region (ω ≈ 0.140 THz) and sources in the IR region (ω ≈ 193 THz) was conducted.

View Article and Find Full Text PDF

We study parametric down-conversion (PDC) of optical laser radiation in the strongly frequency non-degenerate regime which is promising for the generation of quantum-correlated pairs of extremely different spectral ranges, the optical and the terahertz (THz) ones. The possibility to detect tenuous THz-frequency photon fluxes generated under low-gain spontaneous PDC is demonstrated using a hot electron bolometer. Then experimental dependences of the THz radiation power on the detection angle and on the pump intensity are analyzed.

View Article and Find Full Text PDF

As a case study, the energy landscape of the cesium chloride/lithium chloride system was investigated by combining theoretical and experimental methods. Global optimization for many compositions of this quasi-binary system gave candidates for possible modifications that constitute promising targets for subsequent syntheses based on solid-state reactions. Owing to the synergetic and complementary nature of the computational and experimental approaches, a substantially better efficiency of exploration was achieved.

View Article and Find Full Text PDF

Traditionally, the determination of phase diagrams has followed the inductive paradigm, where experimental observations provide the phase boundaries in more or less detail and phenomenological and semi-phenomenological models are employed to interpolate between the experimental data points, and by extrapolation to predict the shape of the phase boundaries in experimentally inaccessible regions. Over the past fifteen years, a new methodology has been developing, the aim of which is the prediction, determination and validation of phase diagrams in chemical systems without any recourse to experimental information. The foundation stone of this deductive approach is the global study of the energy landscape of the chemical system.

View Article and Find Full Text PDF