We describe an effort ("Codebook") to determine the sequence specificity of 332 putative and largely uncharacterized human transcription factors (TFs), as well as 61 control TFs. Nearly 5,000 independent experiments across multiple and assays produced motifs for just over half of the putative TFs analyzed (177, or 53%), of which most are unique to a single TF. The data highlight the extensive contribution of transposable elements to TF evolution, both in and , and identify tens of thousands of conserved, base-level binding sites in the human genome.
View Article and Find Full Text PDFA DNA sequence pattern, or "motif", is an essential representation of DNA-binding specificity of a transcription factor (TF). Any particular motif model has potential flaws due to shortcomings of the underlying experimental data and computational motif discovery algorithm. As a part of the Codebook/GRECO-BIT initiative, here we evaluated at large scale the cross-platform recognition performance of positional weight matrices (PWMs), which remain popular motif models in many practical applications.
View Article and Find Full Text PDFTranscription factors (TFs) are key players in eukaryotic gene regulation, but the DNA binding specificity of many TFs remains unknown. Here, we assayed 284 mostly poorly characterized, putative human TFs using selective microfluidics-based ligand enrichment followed by sequencing (SMiLE-seq), revealing 72 new DNA binding motifs. To investigate whether some of the 158 TFs for which we did not find motifs preferably bind epigenetically modified DNA (i.
View Article and Find Full Text PDFA long-standing challenge in human regulatory genomics is that transcription factor (TF) DNA-binding motifs are short and degenerate, while the genome is large. Motif scans therefore produce many false-positive binding site predictions. By surveying 179 TFs across 25 families using >1,500 cyclic selection experiments with fragmented, naked, and unmodified genomic DNA - a method we term GHT-SELEX (Genomic HT-SELEX) - we find that many human TFs possess much higher sequence specificity than anticipated.
View Article and Find Full Text PDFMost of the human genome is thought to be non-functional, and includes large segments often referred to as "dark matter" DNA. The genome also encodes hundreds of putative and poorly characterized transcription factors (TFs). We determined genomic binding locations of 166 uncharacterized human TFs in living cells.
View Article and Find Full Text PDF