Mesenchymal stem/stromal cells (MSCs) are becoming increasingly important for biomedical applications, such as cell therapy, disease modeling, and drug screening. At the same time, long-term cultivation, which is necessary to prepare a sufficient amount of cellular material for therapeutic and research purposes, is accompanied by the development of replicative senescence. Partial reprogramming emerged as a novel method that shows promising results in the rejuvenation of cells in vitro and in vivo; however, it has not yet been applied for human MSCs that have undergone replicative senescence in culture.
View Article and Find Full Text PDFThe mechanisms underlying the therapeutic potential of MSCs are the focus of intense research. We studied human MSCs isolated from desquamated endometrium (eMSCs), which, as previously shown, have high regenerative potential in various disease models. The aim was to evaluate the role of secreted VEGF in stimulating angiogenesis and maintaining eMSC viability and migration, which is important for improving the therapeutic properties of MSCs.
View Article and Find Full Text PDFThe study of proliferation regulation in human pluripotent stem cells is crucial to gain insights into understanding the physiology of these cells. However, redox regulation of the pluripotent cell cycle remains largely unexplored. Here, using human embryonic stem cells (hESCs) as well as human induced pluripotent stem cells (hiPSCs), we demonstrate that the level of reactive oxygen species (ROS) in pluripotent cells oscillates in accordance with the cell cycle progression with the peak occurring at transition from S to G /M phase of the cycle.
View Article and Find Full Text PDFEndometrial mesenchymal stem/stromal cells (eMSCs) hold great promise in bioengineering and regenerative medicine due to their high expansion potential, unique immunosuppressive properties and multilineage differentiation capacity. Usually, eMSCs are maintained and applied as a monolayer culture. Recently, using animal models with endometrial and skin defects, we showed that formation of multicellular aggregates known as spheroids from eMSCs enhances their tissue repair capabilities.
View Article and Find Full Text PDFThe synthetic polymer, polyallylamine hydrochloride (PAA), is found in a variety of applications in biotechnology and medicine. It is used in gene and siRNA transfer, to form microcapsules for targeted drug delivery to damaged and tumor cells. Conventional chemotherapy often does not kill all cancer cells and leads to multidrug resistance (MDR).
View Article and Find Full Text PDF