Although oligomeric proteins are predominant in cells, their folding is poorly studied at present. This work is focused on the denaturant- and mutation-induced disassembly of the hexameric mutant Y55W of the Qβ host factor (Hfq) from mesophilic (). Using intrinsic tryptophan fluorescence, dynamic light scattering (DLS), and high-performance liquid chromatography (HPLC), we show that the dissociation of Hfq Y55W occurs either under the effect of GuHCl or during the pre-denaturing transition, when the protein concentration is decreased, with both events proceeding through the accumulation of stable intermediate states.
View Article and Find Full Text PDFGroEL chaperonin is well-known to interact with a wide variety of polypeptide chains. Here we show the data related to our previous work (http://dx.doi.
View Article and Find Full Text PDFMolecular chaperones are involved in folding, oligomerization, transport, and degradation of numerous cellular proteins. Most of chaperones are heat-shock proteins (HSPs). A number of diseases of various organisms are accompanied by changes in the structure and functional activity of chaperones, thereby revealing their vital importance.
View Article and Find Full Text PDFA model of highly metastasizing orthotopic allogeneic breast carcinoma was reproduced and standardized in experiments on BALB/c mice. 4T1 cells characterized by high metastatic activity were transfected with red fluorescent protein (RFP) gene or firefly luciferase (Luc2) gene. Unmodified 4T1 cells and modified 4T1-RFP and 4T1-Luc2 cells were subcutaneously injected to mature female mice into the second mammary fat pads.
View Article and Find Full Text PDFAt present it is unclear which interactions in proteins reveal the presence of intermediate states, their stability and formation rate. In this study, we have investigated the effect of substitutions of hydrophobic amino acid residues in the hydrophobic core of protein and on its surface on a molten globule type intermediate state of apomyoglobin. It has been found that independent of their localization in protein, substitutions of hydrophobic amino acid residues do not affect the stability of the molten globule state of apomyoglobin.
View Article and Find Full Text PDF