The NOAA Deep Space Climate Observatory (DSCOVR) spacecraft was launched on February 11, 2015, and in June 2015 achieved its orbit at the first Lagrange point or L1, 1.5 million km from Earth towards the Sun. There are two NASA Earth observing instruments onboard: the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR).
View Article and Find Full Text PDFThe unique position of the Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Imaging Camera (EPIC) at the Lagrange 1 point makes an important addition to the data from currently operating low orbit Earth observing instruments. EPIC instrument does not have an onboard calibration facility. One approach to its calibration is to compare EPIC observations to the measurements from polar orbiting radiometers.
View Article and Find Full Text PDFWe outline the methodology of interpreting channels 1 and 2 Advanced Very High Resolution Radiometer (AVHRR) radiance data over the oceans and describe a detailed analysis of the sensitivity of monthly averages of retrieved aerosol parameters to the assumptions made in different retrieval algorithms. The analysis is based on using real AVHRR data and exploiting accurate numerical techniques for computing single and multiple scattering and spectral absorption of light in the vertically inhomogeneous atmosphere-ocean system. We show that two-channel algorithms can be expected to provide significantly more accurate and less biased retrievals of the aerosol optical thickness than one-channel algorithms and that imperfect cloud screening and calibration uncertainties are by far the largest sources of errors in the retrieved aerosol parameters.
View Article and Find Full Text PDFThe Global Aerosol Climatology Project data product based on analyses of channel 1 and 2 AVHRR radiances shows significant regional changes in the retrieved optical thickness of tropospheric aerosols which had occurred between the volcano-free periods 1988-91 and 2002-05. These trends appear to be generally plausible, are consistent with extensive sets of long-term ground-based observations throughout the world, and may increase the trustworthiness of the recently identified downward trend in the global tropospheric aerosol load.
View Article and Find Full Text PDF