Publications by authors named "I V Bogdanov"

: Antimicrobial peptides are generally considered promising drug candidates for combating resistant bacterial infections. However, the selectivity of their action may vary significantly. Natural gomesin, isolated from haemocytes of the tarantula , demonstrates a broad spectrum of antimicrobial activities, being the most effective against pathogenic fungi.

View Article and Find Full Text PDF

Today, is still the most common cause of both local and life-threatening systemic candidiasis. The spread of resistant fungal strains has resulted in an urgent need to search for new promising antimycotics. Here, we investigated the antifungal action of the tobacco defensin NaD1 against susceptible and resistant to azoles and echinocandins strains of .

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on creating and examining new functionalized asymmetric Gemini surfactants using a click-reaction method, highlighting the synthesis of alkyl- and azide-substituted variants.
  • The research measures the critical aggregation concentration values and investigates how these surfactants bind to bovine serum albumin (BSA) through fluorescence spectroscopy and light scattering techniques.
  • Findings reveal that the surfactants can alter their binding mechanism with BSA and that their interaction behaviors can be fully characterized using various scientific methods.
View Article and Find Full Text PDF

Defensins are important components of the innate plant immune system, exhibiting antimicrobial activity against phytopathogens, as well as against fungi pathogenic to humans. Along with antifungal activity, plant defensins are also capable of influencing various immune processes, but not much is known about these effects. In this study, we investigated the immunomodulatory effects of the tobacco defensin NaD1, which possesses a pronounced antifungal activity.

View Article and Find Full Text PDF

The antimicrobial resistance crisis along with challenges of antimicrobial discovery revealed the vital necessity to develop new antibiotics. Many of the animal proline-rich antimicrobial peptides (PrAMPs) inhibit the process of bacterial translation. Genome projects allowed to identify immune-related genes encoding animal host defense peptides.

View Article and Find Full Text PDF