Proteo-peptidomic profiling of biofluids is used to identify disease biomarkers and to study molecular mechanisms of pathology development. Previously, we studied changes in cerebrospinal fluid (CSF) and blood plasma associated with Guillain-Barre syndrome (GBS)-a rare and severe disorder of the peripheral nervous system with an unknown etiology. Here, we describe the workflow for the analysis of endogenous peptides from CSF.
View Article and Find Full Text PDFAcute inflammatory demyelinating polyneuropathy (AIDP) - the main form of Guillain-Barre syndrome-is a rare and severe disorder of the peripheral nervous system with an unknown etiology. One of the hallmarks of the AIDP pathogenesis is a significantly elevated cerebrospinal fluid (CSF) protein level. In this paper CSF peptidome and proteome in AIDP were analyzed and compared with multiple sclerosis and control patients.
View Article and Find Full Text PDFTime-of-flight MALDI mass spectrometry (MALDI-TOF-MS) profiling of blood serum of patients with Guillain-Barré syndrome (GBS, 36 samples), chronic inflammatory demyelinating polyneuropathy (CIDP, 24 samples) and practically healthy donors (HD) (35 samples) was carried out in order to identify potential biomarkers of autoimmune demyelinating polyneuropathies (ADP). To simplify the peptide-protein mixture of serum prior to MALDI-TOF-MS analysis samples were pre-fractionated on magnetic microparticles with a weak cation-exchange (MB-WCX) surface. Comparative analysis of mass spectrometric data using the classification algorithms (genetic and neural network-controlled) revealed a characteristic set of peaks, agreed change area with a high specificity and sensitivity of the differentiated mass spectrometry profiles of the blood serum of patients with DPNP and healthy donors (for GBS values of these characteristics reached 100 and 100, and for CIDP 94.
View Article and Find Full Text PDFThis report describes a new method for desorption of low-molecular weight (LMW) peptides from abundant blood proteins for use in subsequent mass spectrometry analyses. Heating of diluted blood serum to 98°C for 15min resulted in dissociation of LMW peptides from the most abundant blood proteins. Application of blood plasma/serum fractionation using magnetic beads with a functionalized surface followed by heating of the resultant fractions significantly increases the number of LMW peptides detected by MALDI-TOF MS, enhances the general reproducibility of mass spectrometry profiles and considerably increases the number of identified blood serum peptides by LC-MS/MS using an Agilent 6520 Accurate-Mass Q-TOF.
View Article and Find Full Text PDF