J Phys Chem Lett
December 2023
Quantum lattices are pivotal in the burgeoning fields of quantum materials and information science. Novel experimental techniques allow the preparation and monitoring of wave packet dynamics on quantum lattices with high spatiotemporal resolution. We present an analytical study of wave packet diffusivity and diffusion length on tight-binding quantum lattices subject to stochastic noise.
View Article and Find Full Text PDFWe present a comprehensive study of enantioselective orientation of chiral molecules excited by a pair of delayed cross-polarized femtosecond laser pulses. We show that by optimizing the pulses' parameters, a significant degree (∼10%) of enantioselective orientation can be achieved at 0 and 5 K rotational temperatures. This study suggests a set of reasonable experimental conditions for inducing and measuring strong enantioselective orientation.
View Article and Find Full Text PDFWe theoretically study an impulsively excited quantum bouncer (QB)-a particle bouncing off a surface in the presence of gravity. A pair of time-delayed pulsed excitations is shown to induce a wave-packet echo effect-a partial rephasing of the QB wave function appearing at twice the delay between pulses. In addition, an appropriately chosen observable [here, the population of the ground gravitational quantum state (GQS)] recorded as a function of the delay is shown to contain the transition frequencies between the GQSs, their populations, and partial phase information about the wave-packet quantum amplitudes.
View Article and Find Full Text PDFWe demonstrate an efficient algorithm for inverse problems in time-dependent quantum dynamics based on feedback loops between Hamiltonian parameters and the solutions of the Schrödinger equation. Our approach formulates the inverse problem as a target vector estimation problem and uses Bayesian surrogate models of the Schrödinger equation solutions to direct the optimization of feedback loops. For the surrogate models, we use Gaussian processes with vector outputs and composite kernels built by an iterative algorithm with the Bayesian information criterion (BIC) as a kernel selection metric.
View Article and Find Full Text PDFWe present a novel, previously unreported phenomenon appearing in a thermal gas of nonlinear polar molecules excited by a single THz pulse. We find that the induced orientation lasts long after the excitation pulse is over. In the case of symmetric-top molecules, the time-averaged orientation remains indefinitely constant, whereas in the case of asymmetric-top molecules the orientation persists for a long time after the end of the pulse.
View Article and Find Full Text PDF