Publications by authors named "I Trayner"

The identification of the most suitable molecular targets for gene and drug therapy is the crucial first step in the development of new disease treatments. The rational identification of such targets depends on a detailed understanding of the pathological changes occuring at the molecular level. We have applied forward genetics approaches to the identification of the critical genes involved in the control of apoptosis in mammalian cells, since defective control of apoptosis underlies many diseases, including cancer and neurodegenerative diseases.

View Article and Find Full Text PDF

Functional expression cloning strategies are highly suitable for the analysis of the molecular control of apoptosis. This approach has two critical advantages. Firstly, it eliminates prior assumptions about the properties of the proteins involved, and, secondly, it selectively targets proteins that are causally involved in apoptosis control and which affect the crucial cellular decision between survival and death.

View Article and Find Full Text PDF

For many gene therapy applications the effective titre of retroviral vectors is a limiting factor both in vitro and in vivo. Purification and concentration of retrovirus from packaging cell supernatant can overcome this problem. To this end we have investigated a novel procedure which involves complexing retrovirus to a dense and particulate substrate followed by a short low-speed centrifugation.

View Article and Find Full Text PDF

We describe changes in antigen expression on HL60 cells with differentiation into granulocytes induced by all-trans retinoic acid (ATRA) or dimethylsulphoxide (DMSO), into monocytes by alpha1,25-dihydroxyvitamin D3 (D3), or into macrophages by 12-O-tetradecanoyl phorbol-13-acetate (TPA). Undifferentiated cells expressed CD13, CD14 (at a low level), CD15, CDw17, CD32, CD33, CD49e, CD63, CD64, CDw65, CD71 and CD87 antigens and bound the unclustered mAb D171 and Mo5. Differentiated and undifferentiated cells were negative for CD16, CD34, CD61, CD66abcde, CD68, CD88, CDw90 and CD93.

View Article and Find Full Text PDF

Background: The murine coat-colour mutation recessive spotting (rs) maps very closely to the W/Kit locus, encoding the proto-oncoprotein Kit, the protein tyrosine kinase receptor for stem cell factor. Kit is important in the development of melanocytes, germ cells, interstitial cells of Cajal (ICC) and haemopoietic lineages, including mast cells. rs has never been genetically separated from Kit, and interacts with Kit mutations, suggesting that it is a recessive allele of Kit.

View Article and Find Full Text PDF