Papillary thyroid carcinoma (PTC) is one of the most common, well-differentiated carcinomas of the thyroid gland. PTC nodules are often surrounded by a collagen capsule that prevents the spread of cancer cells. However, as the malignant tumor progresses, the integrity of this protective barrier is compromised, and cancer cells invade the surroundings.
View Article and Find Full Text PDFSingle-walled carbon nanotubes (SWCNTs) show great potential for their application as cancer therapeutic nanodrugs, but the efficiency and mechanism of their accumulation in the cell, the modulation of cell activity, and the strong dependence of the results on the type of capping molecule still hinder the transfer of SWCNTs to the clinic. In the present study, we determined the mechanism and sequence of accumulation, distribution and type discrimination of SWCNTs in glioma cells by applying K-means clustering and principal component analysis (PCA) of Raman spectra of cells exposed to SWCNTs capped with either DNA or oligonucleotides (ON). Based on the specific biochemical information uncovered by PCA and further applied to K-means, we show that the accumulation of SWCNT-DNA occurs in two phases.
View Article and Find Full Text PDFWe propose a simple, fast, and low-cost method for producing Au-coated black Si-based SERS-active substrates with a proven enhancement factor of 10. Room temperature reactive ion etching of silicon wafer followed by nanometer-thin gold sputtering allows the formation of a highly developed lace-type Si surface covered with homogeneously distributed gold islands. The mosaic structure of deposited gold allows the use of Au-uncovered Si domains for Raman peak intensity normalization.
View Article and Find Full Text PDFBlack silicon (bSi) is a highly absorptive material in the UV-vis and NIR spectral range. Photon trapping ability makes noble metal plated bSi attractive for fabrication of surface enhanced Raman spectroscopy (SERS) substrates. By using a cost-effective room temperature reactive ion etching method, we designed and fabricated the bSi surface profile, which provides the maximum Raman signal enhancement under NIR excitation when a nanometrically-thin gold layer is deposited.
View Article and Find Full Text PDFSingle-walled carbon nanotubes (SWCNTs) demonstrate a strong potential as an optically activated theranostic nano-agent. However, using SWCNTs in theranostics still requires revealing mechanisms of the SWCNT-mediated effects on cellular functions. Even though rapid and delayed cellular responses can differ significantly and may lead to undesirable consequences, understanding of these mechanisms is still incomplete.
View Article and Find Full Text PDF