Publications by authors named "I Tcacencu"

A novel apatite-wollastonite/poly(lactic acid) (AW/PLA) composite structure, which matches cortical and cancellous bone properties has been produced and evaluated in vitro and in vivo. The composites structure has been produced using an innovative combination of 3D printed polymer and ceramic macrostructures, thermally bonded to create a hybrid composite structure. In vitro cell assays demonstrated that the AW structure alone, PLA structure alone, and AW/PLA composite were all biocompatible, with the AW structure supporting the proliferation and osteogenic differentiation of rat bone marrow stromal cells.

View Article and Find Full Text PDF

In this study, an innovative injectable and bioresorbable composite cement (Spine-Ghost) has been developed by combining a radiopaque glass-ceramic powder (SCNZgc) and spray-dried mesoporous bioactive particles (W-SC) into type III alpha calcium sulphate hemihydrate (α-CSH) (composition α-CSH/SCNZgc/W-SC, 70/20/10 wt%). The Spine-Ghost cement and pure α-CSH (as a reference) were characterised in terms of physical and mechanical properties and compared to a commercial reference (Cerament®- Bonesupport AB, Sweden). The Spine-Ghost cement had a setting time comparable with Cerament® showing a good injectability in the range of 8-20 minutes after the end of mixing.

View Article and Find Full Text PDF
Article Synopsis
  • Synthesized methacrylate-terminated PLGA (HT-PLGA) for potential use in craniomaxillofacial fracture fixation plates, focusing on its in vitro degradation over 6 weeks.
  • Molecular weight reduction was observed in HT-PLGA (48%), H-PLGA (23%), and L-PLGA (81%), with HT-PLGA and H-PLGA maintaining stable pH levels and flexural moduli above 6 GPa initially.
  • Cell culture tests indicated all materials were cytocompatible but lacked osteogenic potential, leading to the conclusion that HT-PLGA has desirable mechanical properties for craniofacial applications.
View Article and Find Full Text PDF

Alveolar bone loss can be caused by periodontitis or periodontal trauma. We have evaluated the effects of transplanted undifferentiated human mesenchymal stem cells (hMSCs) on alveolar bone reaction and periodontal ligament healing in an experimental periodontal wound model. The hMSCs seeded onto a self-assembling peptide hydrogel in combination with collagen sponge were implanted into the right mandible of 12 rats and followed for 1 (n=6) or 4 weeks (n=6) postoperatively.

View Article and Find Full Text PDF

We exploited the biomimetic approach to generate constructs composed of synthetic biphasic calcium phosphate ceramic and extracellular matrix (SBC-ECM) derived from adult human dermal fibroblasts in complete xeno-free culture conditions. The construct morphology and composition were assessed by scanning electron microscopy, histology, immunohistochemistry, Western blot, glycosaminoglycan, and hydroxyproline assays. Residual DNA quantification, endotoxin testing, and local inflammatory response after implantation in a rat critical-sized calvarial defect were used to access the construct biocompatibility.

View Article and Find Full Text PDF