Publications by authors named "I Tazes"

We introduce a novel, gaseous target optical shaping laser set-up, capable to generate short scale length, near-critical target profiles via generated colliding blast waves. These profiles are capable to maintain their compressed density for several nanoseconds, being therefore ideal for laser-plasma particle acceleration experiments in the near critical density plasma regime. Our proposed method overcomes the laser-target synchronization limitations and delivers energetic protons, during the temporal evolution of the optically shaped profile, in a time window of approximately 2.

View Article and Find Full Text PDF

Laser WakeField Acceleration (LWFA) is extensively used as a high-energy electron source, with electrons achieving energies up to the GeV level. The produced electron beam characteristics depend strongly on the gas density profile. When the gaseous target is a gas jet, the gas density profile is affected by parameters, such as the nozzle geometry, the gas used, and the backing pressure applied to the gas valve.

View Article and Find Full Text PDF

The temporal rearrangement of the spectral components of an ultrafast and intense laser pulse, i.e., the chirp of the pulse, offers significant possibilities for controlling its interaction with matter and plasma.

View Article and Find Full Text PDF