The trigeminovascular system has a pivotal role in the pathomechanism of migraine. The aim of the present study was to further develop existing models of migraine making them more suitable for testing the effects of compounds with presumed antimigraine activity in anaesthetised rats. Simultaneous recording of ongoing activity of spontaneously active neurons in the trigeminocervical complex as well as their discharges evoked by electrical stimulation of the dura mater via activation of A- and C-sensory fibres were carried out.
View Article and Find Full Text PDFRecent Pat CNS Drug Discov
January 2009
Migraine is a painful, sometimes debilitating disorder, which is frequently associated with various neurological symptoms. Its prevalence in the population is higher than that of any other neurological disorders, thus the burden of this disease on society is considerable. Although the introduction of triptans nearly two decades ago revolutionized the treatment of the disease there is still a huge unmet need regarding drugs with better properties.
View Article and Find Full Text PDFRecent Pat CNS Drug Discov
January 2007
Voltage gated sodium channels play important roles both in vital physiological functions and several pathological processes of the central nervous system. Epilepsy, chronic pain, neurodegenerative diseases, and spasticity are all characterized by an over-excited state of specific groups of central neurons that is accompanied by an abnormally increased activity of sodium channels. An efficient strategy of controlling such diseases is to use blockers that preferentially act on these over-excited cells.
View Article and Find Full Text PDFChronic pain states and epilepsies are common therapeutic targets of voltage-gated sodium channel blockers. Inhibition of sodium channels results in central muscle relaxant activity as well. Selective serotonin reuptake inhibitors are also applied in the treatment of pain syndromes.
View Article and Find Full Text PDFVoltage-gated sodium channel (VGSC) blockers are widely used in the therapy, but most currently available blockers have suboptimal profile. However, discovery of new drug candidates has been hampered by the lack of appropriate in vitro assays. We established a fluorometric, plate reader-based membrane potential assay for testing the inhibitory potency of various VGSC blocking drugs, using primary cultures of cerebellar neurons, and veratridine, as activator of VGSCs.
View Article and Find Full Text PDF