Publications by authors named "I Talior"

Introduction: Collagen is the major structural protein of human dentin. Degradation of collagen by bacterial enzymes can facilitate microbial penetration, compromise structural/interfacial integrity, and lower resistance to fracture of dentin. We evaluated the ability of photodynamic therapy (PDT), bioactive chitosan nanoparticles (CSnp), or PDT in combination with CSnp to inhibit bacterial collagenase-mediated degradation of collagen.

View Article and Find Full Text PDF

Fibrosis is a frequent complication of diabetes mellitus in many organs and tissues but the mechanism of how diabetes-induced glycation of extracellular matrix proteins impacts the formation of fibrotic lesions is not defined. As fibrosis is mediated by myofibroblasts, we investigated the effect of collagen glycation on the conversion of human cardiac fibroblasts to myofibroblasts. Collagen glycation was modeled by the glucose metabolite, methylglyoxal (MGO).

View Article and Find Full Text PDF

The insulin-regulated glucose transporter (GLUT4) translocates to the plasma membrane in response to insulin in order to facilitate the postprandial uptake of glucose into fat and muscle cells. While early insulin receptor signaling steps leading to this translocation are well defined, the integration of signaling and regulation of GLUT4 traffic remains elusive. Several lines of evidence suggest an important role for the actin cytoskeleton and for protein-protein interactions in regulating GLUT4 localization by insulin.

View Article and Find Full Text PDF

Oxidative stress is thought to be one of the causative factors contributing to insulin resistance and type 2 diabetes. Previously, we showed that reactive oxygen species (ROS) production is significantly increased in adipocytes from high-fat diet-induced obese and insulin-resistant mice (HF). ROS production was also associated with the increased activity of PKC-delta.

View Article and Find Full Text PDF

Increased oxidative stress is believed to be one of the mechanisms responsible for hyperglycemia-induced tissue damage and diabetic complications. In these studies, we undertook to characterize glucose uptake and oxidative stress in adipocytes of type 2 diabetic animals and to determine whether these promote the activation of PKC-delta. The adipocytes used were isolated either from C57Bl/6J mice that were raised on a high-fat diet (HF) and developed obesity and insulin resistance or from control animals.

View Article and Find Full Text PDF