Fibrosis, characterised by excessive extracellular matrix deposition, contributes to both organ failure and significant mortality worldwide. Whereas fibroblasts are activated into myofibroblasts, marked by phenotypic factors such as α-smooth muscle actin (α-SMA), periostin, fibroblast activation protein (FAP) and heat shock protein 47 (HSP47), the cellular processes of trans-differentiation for fibrosis development remain poorly understood. Herein, we hypothesised that the molecular signalling of geranylgeranyl pyrophosphate (GGPP), a crucial biochemical molecule for protein prenylation, is essential in the regulation of profibrotic mechanisms for fibroblast-to-myofibroblast activation.
View Article and Find Full Text PDFMolecular dynamics simulations are used to examine the thermodynamic and structural aspects of the transfer of the classical hydronium ion (HO) across a water/1,2-dichloroethane (DCE) interface assisted by the phase-transfer catalyst (PTC) tetrakis(pentafluorophenyl) borate anion (TPFB). The free energy of transfer from water to DCE of the HO-TPFB ion pair is calculated to be 6 ± 1 kcal/mol, significantly less than that of the free hydronium ion (17 ± 1 kcal/mol). The ion pair is relatively stable at the interface and in the organic phase when it is accompanied by three water molecules with a small barrier to dissociation that supports its utility as a PTC.
View Article and Find Full Text PDFDespite its effectiveness in managing the motor symptoms of Parkinson's disease, levodopa therapy is often accompanied by adverse effects that can significantly reduce patients' quality of life. Hence, the need to detect levodopa has escalated among researchers and health experts. Herein, the intricacies of levodopa adsorption were studied using newly tailored fullerene-based adsorbents.
View Article and Find Full Text PDF