Publications by authors named "I Sunitha"

The human papillomavirus type 16 (HPV-16) E5 protein is an 83-amino-acid, hydrophobic polypeptide that has been localized to intracellular membranes when overexpressed in COS-1 cells. While the HPV-16 E5 protein appears to modulate endosomal pH and signal transduction pathways, genetic analysis of its biological activities has been hampered by low (usually nondetectable) levels of expression in stable cell lines. Sequence analysis of the native HPV-16 E5 gene revealed that infrequent-use codons are used for 33 of its 83 amino acids and, in an effort to optimize E5 expression, we converted these codons to those more common in mammalian genes.

View Article and Find Full Text PDF

The E5 oncoprotein of bovine papillomavirus type 1 is a Golgi-resident, hydrophobic polypeptide that can transform immortalized fibroblasts by activating endogenous platelet-derived growth factor receptor beta (PDGF-R). However, the existence of E5 mutants that dissociate transformation from PDGF-R activation implies that there are additional mechanism(s) by which E5 can transform cells. We now show that both wt E5, and transforming E5 mutants that are defective for PDGF-R activation, constitutively activate endogenous c-Src in NIH3T3 cell lines to levels normally associated with acute growth factor stimulation.

View Article and Find Full Text PDF

Pleiotrophin (PTN) is a secreted growth factor that induces neurite outgrowth and is mitogenic for fibroblasts, epithelial, and endothelial cells. During tumor growth PTN can serve as an angiogenic factor and drive tumor invasion and metastasis. To identify a receptor for PTN, we panned a phage display human cDNA library against immobilized PTN protein as a bait.

View Article and Find Full Text PDF

Hepatocyte growth factor (HGF) elicits pleiotropic cellular responses by binding to c-met, a PTK transmembrane receptor. The recent identification of HGF in fluids which enter the gut lumen suggests a mechanism by which c-met molecules are accessible to ligand that is present near the apical surfaces of polarized enterocytes. A subset of c-met molecules was detected, by confocal and immunoelectron microscopic analysis, which colocalizes with a recently identified src-related gastrointestinal tyrosine kinase (gtk) in the brush border membranes of enterocytes.

View Article and Find Full Text PDF

Recently, we isolated a new src family member from a rat small intestinal cDNA library which by RNase protection analysis is selectively expressed in the columnar epithelium of gut. Complete nucleotide sequencing of the gastrointestinal associated tyrosine kinase (gtk) has revealed that it is a rat homologue of frk/rak-a fyn related human tyrosine kinase. Unlike frk/rak, gtk is myristylated, in vivo.

View Article and Find Full Text PDF