Publications by authors named "I Stepuro"

Context: Exogenous nitrogen oxides must be made bioavailable to sustain normal physiology because nitric oxide synthase (NOS) deficient mice are viable. In the stomach, S-nitrosoglutathione (GSNO) is formed from ingested nitrite and high levels of airway glutathione (GSH) that are cleared and swallowed. However, gastric GSNO may be broken down by nutrients like ascorbic acid (AA) before it is absorbed.

View Article and Find Full Text PDF

The data available in literature about formation, properties, possible biological role and practical application of the oxidized derivatives of B1 vitamin (thiamine) is first generalized and analysed in the review. It is known that at the values of pH > 7.0 the molecule of thiamine is able to undergo two-phase reaction of opening of thiazole ring with formation of anion of thiol form of thiamine and unstable tricyclic form.

View Article and Find Full Text PDF

It is shown that nitrogen dioxide oxidizes thiamine to thiamine disulfide, thiochrome, and oxodihydrothiochrome (ODTch). The latter is formed during oxidation of thiochrome by nitrogen dioxide. Nitrogen dioxide was produced by incubation of nitrite with horse ferric myoglobin and human hemoglobin in the presence of hydrogen peroxide.

View Article and Find Full Text PDF

The capacity of nitrite, S-nitrosothiols (RS-NO), dinitrosyl iron complexes (DNICs) with thiol-containing ligands, and nitrosoamines to inhibit catalase has been used for the selective determination of these compounds in purely chemical systems and biological liquids: cow milk and colostram. The limiting sensitivity of the method is 50 nM. A comparison of the results of the determinations of RS-NO, DNIC, and nitrite by the catalase method and the Greese method conventionally used for nitrite detection showed that, firstly, Greese reagents decompose DNIC and RS-NO to form nitrite.

View Article and Find Full Text PDF

Nanosecond laser flash-photolysis technique was used to study bimolecular and geminate molecular oxygen (O2) rebinding to alpha and beta subunits within oxygenated human adult hemoglobin in solutions and porous wet sol-gel matrices. Plasticity associated with the tertiary structure within R-state hemoglobin is explored through measurements that focus on the functional properties of hemoglobin under conditions designed to tune the tertiary structure without inducing the R to T transition. Inequivalence in the O2 binding to the alpha and beta hemes within the R quaternary structure is studied.

View Article and Find Full Text PDF