Degradation of a protein via the ubiquitin system involves two discrete steps, signaling by covalent conjugation of multiple moieties of ubiquitin and degradation of the tagged substrate. Conjugation is catalyzed via a three-step mechanism that involves three distinct enzymes that act successively: E1, E2, and E3. The first two enzymes catalyze activation of ubiquitin and transfer of the activated moiety to E3, respectively.
View Article and Find Full Text PDFDegradation of a protein via the ubiquitin system involves two discrete steps, conjugation of ubiquitin to the substrate and degradation of the adduct. Conjugation follows a three-step mechanism. First, ubiquitin is activated by the ubiquitin-activating enzyme, E1.
View Article and Find Full Text PDFThe transcription factor c-Fos is a short-lived cellular protein. The levels of the protein fluctuate significantly and abruptly during changing pathophysiological conditions. Thus, it is clear that degradation of the protein plays an important role in its tightly regulated activity.
View Article and Find Full Text PDFIn most cases, the transcriptional factor NF-kappa B is a heterodimer consisting of two subunits, p50 and p65, which are encoded by two distinct genes of the Rel family. p50 is translated as a precursor of 105 kDa. The C-terminal domain of the precursor is rapidly degraded, forming the mature p50 subunit consisted of the N-terminal region of the molecule.
View Article and Find Full Text PDF