Background: Systematic reviews (SRs) are time-consuming and labor-intensive to perform. With the growing number of scientific publications, the SR development process becomes even more laborious. This is problematic because timely SR evidence is essential for decision-making in evidence-based healthcare and policymaking.
View Article and Find Full Text PDFBackground And Purpose: Head and neck cancer (HNC) patients treated with radiotherapy often suffer from radiation-induced toxicities. Normal Tissue Complication Probability (NTCP) modeling can be used to determine the probability to develop these toxicities based on patient, tumor, treatment and dose characteristics. Since the currently used NTCP models are developed using supervised methods that discard unlabeled patient data, we assessed whether the addition of unlabeled patient data by using semi-supervised modeling would gain predictive performance.
View Article and Find Full Text PDF