Micromachines (Basel)
December 2020
3D-inkjet-printing is just beginning to take off in the optical field. Advantages of this technique include its fast and cost-efficient fabrication without tooling costs. However, there are still obstacles preventing 3D inkjet-printing from a broad usage in optics, e.
View Article and Find Full Text PDFWe present design and manufacture of a 3D printed varifocal freeform optics. The optical refraction power can be tuned continuously by mutual rotation of two helically shaped lens bodies of azimuthally varying curvatures. Since no additional space for axial or lateral lens movement is required, rotation optics allow for a highly compact design of varifocal optics.
View Article and Find Full Text PDFThis paper describes the application of a modeling approach for precise optical performance prediction of free-form optics-based subsystems on a demonstration model of an eye implant. The simulation model is enhanced by surface data measured on the free-form lens parts. The manufacturing of the free-form lens parts is realized by two different manufacturing processes: ultraprecision diamond machining and microinjection molding.
View Article and Find Full Text PDFMicromachines (Basel)
May 2016
This article describes an approach to the robust design of an optical micromachine consisting of a freeform optics, an amplification linkage, and an actuator. The robust design approach consists of monolithic integration principles to minimize assembly efforts and of an optimization of the functional components with respect to robustness against remaining assembly and manufacturing tolerances. The design approach presented involves the determination of the relevant tolerances arising from the domains manufacturing, assembly, and operation of the micromachine followed by a sensitivity analysis with the objective of identifying the worst offender.
View Article and Find Full Text PDFMicroinjection molding is a mass production method to fabricate affordable optical components. However, the intense nature of this process often results in part deformation and uneven refractive index distribution. These two factors limit the precision of replicated optics.
View Article and Find Full Text PDF