Theoretical and experimental studies suggest that both Hermitian and non-Hermitian quasicrystals show localization due to the fractal spectrum and to the transition to diffusive bands via exceptional points, respectively. Here, we present an experimental study of a dodecagonal photonic quasicrystal based on electromagnetically induced transparency in a Rb vapor cell. First, we observe the suppression of the wave packet expansion in the Hermitian case.
View Article and Find Full Text PDFTopological physics relies on Hamiltonian's eigenstate singularities carrying topological charges, such as Dirac points, and - in non-Hermitian systems - exceptional points (EPs), lines or surfaces. So far, the reported non-Hermitian topological transitions were related to the creation of a pair of EPs connected by a Fermi arc out of a single Dirac point by increasing non-Hermiticity. Such EPs can annihilate by reducing non-Hermiticity.
View Article and Find Full Text PDFWe present a numerical study of exciton-polariton (polariton) condensation in a staggered polariton graphene showing a gapped s band. The condensation occurs at the kinetically favorable negative mass extrema (K and K^{'} valleys) of the valence band. Considering attractive polariton-polariton interaction allows us to generate a spatially extended condensate.
View Article and Find Full Text PDF