Publications by authors named "I Schroeder"

Kcv channels from plant viruses represent the autonomous pore module of potassium channels, devoid of any regulatory domains. These small proteins show very reproducible single-channel behavior in planar lipid bilayers. Thus, they are an optimum system for the study of the biophysics of ion transport and gating.

View Article and Find Full Text PDF

The oceanographic conditions of the Southern California Bight (SCB) dictate the distribution and abundance of prey resources and therefore the presence of mobile predators, such as goose-beaked whales (). Goose-beaked whales are deep-diving odontocetes that spend a majority of their time foraging at depth. Due to their cryptic behavior, little is known about how they respond to seasonal and interannual changes in their environment.

View Article and Find Full Text PDF

Background: Approximately one in three survivors of critical illness suffers from intensive-care-unit-acquired weakness, which increases mortality and impairs quality of life. By counteracting immobilization, a known risk factor, active mobilization may mitigate its negative effects on patients. In this single-center trial, the effect of robotic-assisted early mobilization in the intensive care unit (ICU) on patients' outcomes was investigated.

View Article and Find Full Text PDF

Cave Automatic Virtual Environment (CAVE) is a virtual reality (VR) environment that has not been fully studied due to its high cost and complexity in system integration. Previous CAVE-related studies mainly focused on comparing its effectiveness with other learning media, such as textbooks, desktop VR, or head-mounted display (HMD) VR. In this study, through the utilization of CAVE in a meteorology class, we concentrated on CAVE itself, measured how CAVE impacted learners' learning outcomes before and after using CAVE in an actual ongoing undergraduate-level class, and investigated how learners perceived their learning experiences.

View Article and Find Full Text PDF

Background: Early mobilization is only carried out to a limited extent in the intensive care unit. To address this issue, the robotic assistance system VEMOTION® was developed to facilitate (early) mobilization measures more easily. This paper describes the first integration of robotic assistance systems in acute clinical intensive care units.

View Article and Find Full Text PDF