Environ Sci Pollut Res Int
May 2010
The amount of non-extractable residues (NER) of organic xenobiotics in the soil can considerably exceed the amount of extractable residues which are accessible to normal residue analysis. The NER therefore present a burden to the soil, the toxicological and ecotoxicological potential of which is largely unknown. For the characterization of bound residues and their binding type, special solubilization methods such as supercritical fluid extraction are applied and experiments with radiolabeled model polymers are performed.
View Article and Find Full Text PDFThe humic monomer catechol was reacted with (14)C-isoproturon and some of its metabolites, including (14)C-4-isopropylaniline, in aqueous solution under a stream of oxygen. Only in the case of (14)C-4-isopropylaniline, incorporation in oligomers, in fulvic acid-like polymers, and in humic acid-like polymers by covalent bonds was observed. The main oligomer was identified by mass spectrometry as a trimer, 4,5-bis-(4-isopropylphenylamino)-3,5-cyclohexadiene-1,2-dione.
View Article and Find Full Text PDF14C-terbuthylazine was applied to three Brazilian soils in closed aerated laboratory microcosms, both under standardized and under natural Brazilian climate conditions. Volatilization from soil to air, leaching from soil to percolate water, and transport from upper to deeper soil layers were higher in sandy soil than in clay soil and in organic soil. Mineralization of 14C-terbuthylazine to 14CO2 was higher in sandy soil than in clay and organic soils under standardized climatic conditions, whereas it was higher in organic soil than in sandy soil under Brazilian summer conditions.
View Article and Find Full Text PDFEcotoxicol Environ Saf
October 1999
The genetic modified Pseudomonas fluorescens Br 12, resistant to kanamycin and rifampycin, was used to follow the cotransport of the organochlorine acaricide dicofol through a nonsterilized soil column. P. fluorescens was found to bioaccumulate dicofol with the highest bioconcentration factor of 279 within 30 min.
View Article and Find Full Text PDFPolychlorinated bornanes, the main components of Toxaphene, are bioconcentrated in aquatic organisms to a high extent. However, up to this time no bioconcentration tests with individual chlorinated bornanes in aquatic organisms have been performed. Therefore, the bioconcentration factors (BCFs) of seven selected persistent chlorinated bornane congeners which are regularly found in aquatic organisms, were predicted from their n-octanol/water partition coefficients (log Kow).
View Article and Find Full Text PDF