Publications by authors named "I Schall"

Anaerobic toluene degradation proceeds by fumarate addition to produce (R)-benzylsuccinate as first intermediate, which is further degraded via β-oxidation by five enzymes encoded in the conserved bbs operon. This study characterizes two enzymes of this pathway, (E)-benzylidenesuccinyl-CoA hydratase (BbsH), and (S,R)-2-(α-hydroxybenzyl)succinyl-CoA dehydrogenase (BbsCD) from Thauera aromatica. BbsH, a member of the enoyl-CoA hydratase family, converts (E)-benzylidenesuccinyl-CoA to 2-(α-hydroxybenzyl)succinyl-CoA and was subsequently used in a coupled enzyme assay with BbsCD, which belongs to the short-chain dehydrogenases/reductase (SDR) family.

View Article and Find Full Text PDF

Aim: To provide an overview of thresholds for incremental cost-effectiveness ratios (ICERs) representing willingness-to-pay (WTP) across multiple countries and insights into exemptions pertaining to the ICER (e.g., cancer).

View Article and Find Full Text PDF

The denitrifying bacterium 'Aromatoleum aromaticum' strain EbN1 is one of the best characterized bacteria regarding anaerobic ethylbenzene degradation. EbN1 also degrades various other aromatic and phenolic compounds in the absence of oxygen, one of them being p-ethylphenol. Despite having similar chemical structures, ethylbenzene and p-ethylphenol have been proposed to be metabolized by completely separate pathways.

View Article and Find Full Text PDF

Background: Generic drugs are considered therapeutically equivalent to their original counterparts and lower in acquisition costs. However, the overall impact of generic substitution (GS) on global clinical and economic outcomes has not been conclusively evaluated.

Objective: To test whether (1) generics and original products yield the same health outcomes, and (2) generic therapies save economic resources versus original therapies.

View Article and Find Full Text PDF

A continuous general spectrophotometric assay for measuring the activity of aminotransferases has been developed. It is based on the transamination of a keto compound (amino acceptor) and l-glutamate (amino donor), yielding the corresponding amino compound and 2-oxoglutarate. The rate of formation of 2-oxoglutarate is measured in a coupled reaction with overproduced recombinant nicotinamide adenine dinucleotide (NAD(+))-dependent (R)-2-hydroxyglutarate dehydrogenase from Acidaminococcus fermentans, with the rate of absorbance decrease at 340nm indirectly reflecting the aminotransferase activity.

View Article and Find Full Text PDF