Publications by authors named "I Samajdar"

Modern analytical tools, from microfocus X-ray diffraction (XRD) to electron microscopy-based microtexture measurements, offer exciting possibilities of diffraction-based multiscale residual strain measurements. The different techniques differ in scale and resolution, but may also yield significantly different strain values. This study, for example, clearly established that high-resolution electron backscattered diffraction (HR-EBSD) and high-resolution transmission Kikuchi diffraction (HR-TKD) [sensitive to changes in interplanar angle (Δθθ)], provide quantitatively higher residual strains than micro-Laue XRD and transmission electron microscope (TEM) based precession electron diffraction (PED) [sensitive to changes in interplanar spacing (Δdd)].

View Article and Find Full Text PDF

The hole expansion ratio (HER) test is used to determine the stretch-flangeability of materials. Standard HER tests are performed on specimens sized a few tens of centimeters, termed macro-HER tests. This leads to significant material wastage due to the destructive nature of the tests.

View Article and Find Full Text PDF

MgSbBi solid-solutions represent an important class of thermoelectric (TE) materials due to their high efficiency and variable operating temperature range. Of particular significance for midtemperature applications is the MgSbBi composition whose superior thermoelectric (TE) performance is attributed to the complex conduction band edge in conjunction with alloy dominated phonon scattering. In this work, we show that microstructure also plays a significant role in lowering the lattice thermal conductivity which in turn affects the overall TE performance (change in peak zT values between 1.

View Article and Find Full Text PDF

Laser material deposition based restoration of high-value components can be a revolutionary technology in remanufacturing. The deposition process induces residual stresses due to thermomechanical behavior and metallurgical transformations. The presence of tensile residual stresses in the deposited layer will compromise the fatigue life of the restored component.

View Article and Find Full Text PDF

Blends of polypropylene (PP) and polyamide 6 (PA6) with multiwalled carbon nanotubes (MWNTs) were prepared using different processing strategies in a twin-screw micro-compounder. The effect of MWNTs on the crystallization behaviour of the PP phase and the PA6 phase of the blend has been investigated through non-isothermal crystallization studies by differential scanning calorimetric analysis. Furthermore, the effect of the addition of the compatibilizer (PP-g-MA) and the modification of MWNTs (m-MWNTs) with a non-covalent organic modifier (Li-salt of 6 amino hexanoic acid, Li-AHA) has also been studied in context to the crystallization behaviour of the PP and PA6 phase in the blend.

View Article and Find Full Text PDF