Publications by authors named "I S Varsegov"

N,N'-Dialkylimidazolium-based ionic liquids are capable of completely dissolving lignocellulosic biomass at elevated temperatures and are considered as promising green solvents for future biorefining technologies. However, the obtained ionic liquid lignin preparations may contain up to several percent nitrogen. This indicates strong interactions between the biopolymer and the IL cation, the nature of which has not yet been clarified.

View Article and Find Full Text PDF

Bromhexine and ambroxol are among the mucolytic drugs most widely used to treat acute and chronic respiratory diseases. Entering the municipal wastewater and undergoing transformations during disinfection with active chlorine, these compounds can produce nitrogen- and bromine-containing disinfection by-products (DBPs) that are dangerous for aquatic ecosystems. In the present study, primary and deep degradation products of ambroxol and bromhexine obtained in model aquatic chlorination experiments were studied via the combination of high-performance liquid and gas chromatography with high-resolution mass spectrometry.

View Article and Find Full Text PDF

Among numerous disinfection by-products (DBP) forming during aqueous chlorination nitrogen containing species are of special concern due to their toxicological properties. Nevertheless, corresponding reaction products of these natural and anthropogenic compounds are not sufficiently studied so far. An interesting reaction involves dealkylation of the substituted amine moiety.

View Article and Find Full Text PDF

Water treatment for most public pools involves disinfection with active chlorine leading to the formation of disinfection by-products (DBPs). Among them, nitrogen-containing compounds (N-DBPs) having increased toxicity and adverse effects on human health are of the greatest concern. Being the major component of various body washers for swimmers, cocamidopropyl betaine (CAPB) represents a potential and still underestimated anthropogenic precursor of N-DBPs in pool water.

View Article and Find Full Text PDF

An indole derivative umifenovir (Arbidol) is one of the most widely used antiviral drugs for the prevention and treatment of COVID-19 and some other viral infections. The purpose of the present study was to shed light on the transformation processes of umifenovir in municipal wastewater, including disinfection with active chlorine, as well as to assess the levels of the antiviral drug and its metabolites entering and accumulating in natural reservoirs under conditions of the SARS-CoV-2 pandemic. The combination of high-performance liquid chromatography with electrospray ionization high-resolution mass-spectrometry and inductively coupled plasma mass spectrometry was used for tentative identification and quantification of umifenovir and its transformation products in model reaction mixtures and real samples of wastewater, river water, biological sludge and bottom sediments taken at the wastewater treatment plant in Arkhangelsk, a large cultural and industrial center at the Russian North.

View Article and Find Full Text PDF