Publications by authors named "I S Pessi"

We describe the genome of an Eremiobacterota population from tundra soil that contains the minimal set of nif genes needed to fix atmospheric N. This putative diazotroph population, which we name Candidatus Lamibacter sapmiensis, links for the first time Eremiobacterota and N fixation. The integrity of the genome and its nif genes are well supported by both environmental and taxonomic signals.

View Article and Find Full Text PDF

Microbial communities in tundra soils remain largely unknown despite their important roles in the cycling of greenhouse gases. Here, we report 59 non-redundant metagenome-assembled genomes (MAGs) recovered from mineral tundra soils in Rásttigáisá, northern Norway. The MAGs were obtained by clustering contigs according to tetranucleotide frequency and differential coverage and were manually curated to remove contigs with outlying GC content and/or mean coverage.

View Article and Find Full Text PDF

Benthic microbial mats dominated by Cyanobacteria are important features of polar lakes. Although culture-independent studies have provided important insights into the diversity of polar Cyanobacteria, only a handful of genomes have been sequenced to date. Here, we applied a genome-resolved metagenomics approach to data obtained from Arctic, sub-Antarctic and Antarctic microbial mats.

View Article and Find Full Text PDF

Ammonia-oxidizing archaea (AOA) are key players in the nitrogen cycle of polar soils. Here, we analyzed metagenomic data from tundra soils in Rásttigáisá, Norway, and recovered four metagenome-assembled genomes (MAGs) assigned to the genus 'UBA10452', an uncultured lineage of putative AOA in the order Nitrososphaerales ('terrestrial group I.1b'), phylum Thaumarchaeota.

View Article and Find Full Text PDF

Due to climate change, increased microbial activity in high-latitude soils may lead to higher greenhouse gas (GHG) emissions. However, microbial GHG production and consumption mechanisms in tundra soils are not thoroughly understood. To investigate how the diversity and functional potential of bacterial and archaeal communities vary across vegetation types and soil layers, we analyzed 116 soil metatranscriptomes from 73 sites in the Finnish sub-Arctic.

View Article and Find Full Text PDF